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Abstract 
We present the most comprehensive catalogue of cancer-associated gene alterations through 
characterization of tumor transcriptomes from 1,188 donors of the Pan-Cancer Analysis of 
Whole Genomes project. Using matched whole-genome sequencing data, we attributed RNA 
alterations to germline and somatic DNA alterations, revealing likely genetic mechanisms. We 
identified 444 associations of gene expression with somatic non-coding single-nucleotide 
variants. We found 1,872 splicing alterations associated with somatic mutation in intronic 
regions, including novel exonization events associated with Alu elements. Somatic copy number 
alterations were the major driver of total gene and allele-specific expression (ASE) variation. 
Additionally, 82% of gene fusions had structural variant support, including 75 of a novel class 
called “bridged” fusions, in which a third genomic location bridged two different genes. Globally, 
we observe transcriptomic alteration signatures that differ between cancer types and have 
associations with DNA mutational signatures. Given this unique dataset of RNA alterations, we 
also identified 1,012 genes significantly altered through both DNA and RNA mechanisms. Our 
study represents an extensive catalog of RNA alterations and reveals new insights into the 
heterogeneous molecular mechanisms of cancer gene alterations. 

Introduction 
Organs and tissues are formed by a complex assembly of numerous cell types and their 
functional heterogeneity is reflected in the diversity of their transcriptional profiles. Despite this, 
almost all tissue types can give rise to cancer, a process that involves dramatic changes in their 
transcriptomes. Transcriptional alterations often result from somatic changes in the cancer 
genome. For example, BCR-ABL1 fusions are caused by single translocation events in chronic 
myelogenous leukemia1 (CML), and HER2 overexpression is frequently the result of focal DNA 
amplifications2. Transcriptomic profiling can be highly informative even in the absence of 
detectable somatic mutations3,4 and even subtle differences in RNA splicing, isoform expression 
and promoter activation have been associated with cancer5,6. Gene expression is predictive of 
treatment response7 and patient survival without a known underlying mutation8. 
 
The lack of driver mutations in some tumor samples has been attributed to the bias towards 
protein coding sequences in the search of recurrent genetic alterations9,10. Using whole-genome 
sequencing, it has been found that recurrent non-coding mutations can act as drivers of cancer, 
often by altering transcription. However, as non-coding mutations are rare and difficult to 
interpret, the link between mutations in the non-coding genome, alterations in the transcriptome, 
and the molecular transformation observed in cancer still remains largely unexplored. 
 
Here, we report the joint analysis of matched transcriptome and genome profiling for 1,188 
samples from 27 tumor types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 
project11, providing the largest resource of RNA phenotypes and their underlying genetic 
changes in cancer. RNA-Seq data were processed in a standardized way and then analysed to 
uncover cancer-specific transcriptome changes. We link these changes to somatic variations in 
the genome, as well as inherited germline background of the patient, highlighting the complexity 
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of transcriptional changes in cancer and the genetic components of these variations. We 
demonstrate the importance of transcriptomics data in understanding how different dimensions 
of specific DNA alterations contribute to carcinogenesis, and map out the landscape of cancer-
related RNA alterations.  

Results 
Unified data processing for PCAWG RNA sequencing data 
For transcriptome analysis, we processed all tumor samples with RNA-Seq data from the 
PCAWG consortium provided by 30 ICGC projects. To harmonize these data across studies, we 
reanalyzed a total of 2,217 RNA-Seq libraries using a unified RNA-Seq analysis pipeline 
developed for this project (software availability described in Methods). Core components of this 
pipeline were spliced alignment of RNA-Seq data followed by gene expression quantification 
(Extended Data Figure 1a). We compared alternative alignment strategies using STAR12 and 
TopHat213 (Extended Data Figure 1a), which yielded highly consistent gene expression 
quantifications (gene-level counts based on HTSeq14, Extended Data Figure 2a). Thus, we 
generated consensus gene expression measurements by averaging read counts for each gene, 
normalized by gene length, followed by upper-quartile normalization (FPKM-UQ)15,16 (Extended 
Data Figure 2b). FPKM-UQ quantification across the subset of TCGA samples were highly 
correlated (median correlation 0.95) with TCGA-reported gene expression using RSEM17 
(Extended Data Figure 3). Transcript isoform-specific expression levels were estimated using 
Kallisto18. 
 
After quality control filtering and merging of technical replicates, we obtained 1,359 RNA-seq 
profiles from 1,188 unique patients (Methods, Extended Data Figure 4), with between two and 
154 samples per histotype (Figure 1a) and approximately equal numbers of male and female 
patients (Figure 1b). For 13 out of the 27 histotypes matched, adjacent normal tissue samples 
were available, giving rise to a total of 150 normal tissue samples (Figure 1a,c).  For additional 
normal coverage, we processed RNA-Seq data from 3,274 samples from the Genotype-Tissue 
Expression (GTEx) Consortium (version phs000424.v4.p1) using the same computational 
pipeline used for the PCAWG RNA-seq dataset. We also generated an adjusted expression 
dataset using PEER19 to account for unknown and technical covariates, as well as a 
conservative normalization based on quantile normalization. While we observe differences 
between GTEx and PCAWG samples, likely due to technical differences and batch variation, we 
find that overall the tissue dominates the expression patterns, suggesting that the combined set 
provides a useful resource (Figure 1d, Extended Data Figure 5a).  Tumor purity varied across 
samples and was considered an additional covariate of expression patterns (Methods, 
Extended Data Figure 5b).  
 

Cancer-specific cis germline regulatory variants highlight changes in 
regulatory landscape 
To investigate the underlying mechanisms of different types of RNA alterations, we first focused 
on changes in mRNA expression level (Extended Data Figure 6). To identify heritable 
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determinants of gene expression variability, we considered common germline variants (Minor 
Allele Frequency (MAF) ≥ 1%) proximal to individual genes (±100kb around the gene) to map 
eQTL across the cohort (Extended Data Figure 7a) using a linear mixed model to account for 
population structure and other confounding factors  (Methods, Supplementary Table 1). This 
pan-cancer analysis (pan-analysis) identified 3,509 genes with an eQTL (FDR ≤ 5%, hereafter 
denoted eGenes; Methods, Supplementary Table 2), enriched in transcription start site (TSS) 
proximal regions as expected from eQTL studies in normal tissues20 (Extended Data Figure 
7b). Analogous tissue-specific eQTL analyses in seven cancer types with 60 or more patients 
identified between 106 (Breast-AdenoCA) and 472 eGenes (Kidney-RCC) (Extended Data 
Figure 8a, Supplementary Table 2, Methods).   
 
To identify regulatory variants that are cancer-specific, we compared our pan-analysis eQTL set 
to eQTL maps from normal tissues obtained from the GTEx project21, adapting a strategy 
devised previously22. For the lead variant, i.e., the most significant SNP of each eQTL, we 

assessed the marginal replication in GTEx tissues (P ≤ 0.01, Bonferroni-adjusted for 42 somatic 

tissues excluding cell lines, using SNPS in Linkage Disequilibrium (LD) with r2>0.8 for variants 
not tested in GTEx, Methods). 87.5% of eQTL (2,982 of 3,408 accessible eQTL variants, 
Methods) were replicated in at least one GTEx tissue, whereas 426 eQTL did not show any 
correspondence in GTEx tissues, suggesting cancer-specific regulation (Figure 2a, 
Supplementary Table 3). One such example is SLAMF9, a member of the CD2 subfamily, with 
known roles in immune response and cancer23 (Figure 2b, Extended Data Figure 9a). 
Similarly, we identified cancer-specific eQTL for genes with known roles in cancer such as 
SLX1A, a regulator of genome stability involved in DNA repair and recombination24,25 (Extended 
Data Figure 9b).  
 
The majority of these cancer-specific regulatory variants could not be explained by differences 
in gene expression level between cancer and normal tissues (328/426 genes with at most a 2-
fold increase in median gene expression compared to GTEx, e.g., SLX1A, Extended Data 
Figure 9b), whereas 98 genes did show evidence of cancer-specific upregulation and ectopic 
expression (e.g., SLAMF9). Among these were immunoglobulin genes and nine cancer/testis 
antigen encoding genes (CT genes) (Extended Data Figure 8b). Cancer testis genes are of 
interest for their known immunogenic properties26,27, and exhibit high expression in sperm and 
some cancers but are repressed in healthy tissues28. We also identified instances of eQTL that 
replicated in GTEx tissues but not in their corresponding normal tissues. One such example is 
TEKT5, which is expressed in our cohort but otherwise specific to testis in GTEx normal tissues, 
pointing to upregulation of selected genes in cancer (Extended Data Figure 8c-e). This 
catalogue of common and cancer-specific regulatory sites provides the basis for the following 
analysis and serves as a resource for analysis of gene regulation in future studies. 
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Somatic cis eQTL mapping reveals widespread associations with non-
coding variants 

We explored the effect of cis somatic variation on gene expression by aggregating somatic 
variants in local burdens in genic and non-genic regions (Methods). Using these somatic 
burden elements, cis germline variants and SCNAs, we decomposed variation in gene 
expression of individual genes into these genetic components (Methods, Figure 2c). This 
analysis identified SCNAs as the major driver of expression variation (27.3% on average, 
Figure 2c), followed by flanking somatic and germline variants. Notably, cis germline effects, 
although exhibiting smaller effects on individual genes, explained the largest proportion of 
variance for 11,905 genes, compared to 3,568 genes, for which somatic factors explained most 
variation.  

We also tested for associations between recurrently mutated intervals (burden frequency ≥ 1%, 
considering 2kb gene-flanking regions, exons and introns) and gene expression levels 
(Extended Data Figure 10a-c, Methods), assessing alternative strategies for burden 
estimation where burdens weighted by variant clonality maximised detection power (Extended 
Data Figure 11a-d). Genome-wide, this identified 649 somatic eQTL (FDR ≤ 5%; 

Supplementary Table 4) associated with 567 unique regions. Among these, 11 somatic eQTL 
were explained by mutational burdens in exons or introns, including genes with known roles in 
the pathogenesis of specific cancers such as CDK12 in ovarian cancer29,30, PI4KA in 
hepatocellular carcinoma31, IRF4 in leukemia32, AICDA in skin melanoma33, C11orf73 in clear 
cell renal cancer34 and BCL2 and SGK1 in lymphoma35, Extended Data Figure 12a-g). The 
majority of eGenes (68.4%) involved associations with flanking non-coding intervals (272 
intergenic, 172 intronic regions, Figure 2d), and were due to mutations observed in multiple 
cancers (Extended Data Figure 13a, Supplementary Table 4). In contrast to germline 
variants, these associations tended to be located distal to the TSS (≥20kb, 88%), with larger 

effects on average than associations proximal to the TSS (|𝛽|=3.3 versus |𝛽|=1.4, Extended 
Data Figure 13b), which points to the relevance of somatic mutations at distal regulatory 
elements. To assess to which extent structural variants (SVs) may have confounded the gene 
expression changes observed for the 649 eGenes, we performed a per sample analysis to 
assess the presence of SVs nearby the leading genomic intervals in each individual with 
associated mutational burden (Methods). This analysis identified 110 (17%) eGenes 
(Supplementary Table 4) with at least one SV close to the individual mutational burden (with a 
maximum distance observed between the burden and the SV of 40kb). Among the eGenes with 
SVs, we found immunoglobulin (Ig) genes to be the most prevalent class of eGenes with 
structural alterations (85/110 eGenes), which is particularly expected for B cell malignancies, 
where Ig genes are known target of genomic translocations 36,37. However, with the exception of 
Ig genes and few other genes (like PACS2), SVs do not seem to frequently co-localize with 
somatic burden for the 649 somatic eGenes identified.  
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We next tested the most significant flanking intervals per somatic eGene (lead flanking intervals) 
for enrichments in cell-type specific regulatory annotations comparing the overlap of true 
associations to distance- and burden-frequency matched random regions (Methods). This 

identified enrichments for 13 out of 25 epigenetic annotations (FDR ≤ 10%, Figure 2e, 
Supplementary Table 5), including poised promoters, weak and active enhancers and 
heterochromatin in more than two cell lines (Figure 2e), but no significant enrichment of TFBS 
(Supplementary Tables 6). 

Poised or bivalent promoters are a hallmark of developmental genes and prepare stem cells for 
somatic differentiation38. Re-activation of poised promoters is one mechanism of upregulation of 
developmental genes in cancer, including CT genes39. CT genes were marginally more frequent 
among genes with somatic eQTL than expected (45/982, P=0.06, Fisher’s exact test), and we 
observed an enrichment for somatic eQTL in bivalent promoters for CT genes (P=0.04, Fisher’s 
exact test). Again, we find TEKT5, an integral component of sperm, that has been found to be 
aberrantly expressed in a variety of cancers40. We observed a positive association between 
TEKT5 expression and somatic mutational burden (prevalently observed in non-Hodgkin 
lymphoma patients) in a bivalent promoter site close to the 5’ end of the gene (Figure 2f). The 
prevalence of developmental genes among the somatic eGenes was also consistent with a 
global enrichment (FDR ≤ 10%) for GO categories related to cell differentiation and 
developmental processes (Supplementary Table 7).  

Allele-specific expression captures cancer-specific dysregulation 

To facilitate expression analysis on the level of individual haplotypes, we quantified allele-
specific expression (ASE), adapting established quality control steps to cancer tissues41, where 
we pooled ASE counts across heterozygous variants within genes to maximize detection power 
(Methods). This allowed us to quantify ASE for between 588 and 7,728 genes per patient 
(median=4,112 genes with 15 or more ASE reads in 1,120 samples, Extended Data Figure 14, 
Methods, Table 1).  
 
To robustly identify genetic elements that contribute to somatic dysregulation, we considered 
ASE42 to test for allelic expression imbalance (AEI) (FDR ≤ 5%, binomial test, Methods). Across 
the cohort, we observed substantial differences in the fraction of genes with AEI between 
cancer types (Figure 2c, Extended Data Figure 14), and between cancer and the 
corresponding normal tissue, which appeared to be driven by variation in somatic copy number 
alteration (SCNA) prevalence43 (Figure 2g, Extended Data Figure 15a,b).  

We used a logistic regression model to identify the determinants of AEI, accounting for the 
germline eQTL genotype, SCNAs and the weighted mutational burden of proximal somatic 
SNVs stratified into functional categories (Extended Data Figure 6, Methods). In aggregate, 
SCNAs accounted for 86.1% of the total explained effect, confirming our findings from the 
somatic eQTL analysis, followed by germline eQTL lead variants (9.0%) and somatic SNVs 
(4.8%) (Figure 2i). While cumulatively, non-coding variants were more relevant than coding 
variants, somatic protein truncating variants (‘stop-gained’) triggering nonsense-mediated 
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decay44 were the most predictive individually (Figure 2h). This was confirmed by a quantitative 
model on ASE ratios (Extended Data Figure 16a-d). SNVs within splice regions, 5’ UTR and 
promoters were also strongly associated with AEI presence and we observed a global trend of 
decreasing relevance of variants with increasing distance from the TSS (Figure 2h). 

Our model allows for distinguishing AEI caused by germline SNPs, SCNAs and somatic SNVs 
by computing an average predicted score per gene across the cohort (Methods, 
Supplementary Table 8), which identified somatic AEI as predictive for genes with relevance in 
cancer (Extended Data Figure 17). Motivated by the observed cancer-specific germline 
regulation of cancer/testis antigen encoding genes (CT genes), we also used these model 
components to investigate sources of AEI in CT genes. Notably, CT genes were depleted when 
considering the full somatic score including SCNAs (25/476 CT genes in the top 10% of genes, 
48 expected, 𝜒2 test, P=6⋅10-4), but enriched in the AEI score based on SNVs only (66/476 CT 
genes in the top 10% of genes, 48 expected, 𝜒2test, P=6⋅10-3). One potential explanation is that 
repressed CT genes have to undergo somatic re-activation by SNVs before CN amplification. 
To elucidate this, we used mutation timing data45,46 (Methods), stratifying SNVs into the 
categories early and late (SNV occurred before and after SCNA at the same locus, respectively) 
and found strong over-representation of early SNVs in 329 out of 7,525 CT gene-patient pairs 
(216 expected, 𝜒2test, P=4⋅10-14). 

 

Promoter mutations are rarely associated with a change in 
alternative promoter activity 

In addition to gene expression levels, we also aimed to characterize other RNA expression 
phenotypes of the cancer transcriptome (Extended Data Figure 1b).  
 
Promoter activity affects gene expression levels and the transcript isoforms expressed47,48. To 
identify active promoters, we combined the expression of isoforms initiated in transcription start 
sites that are identical or nearby, assuming that these are transcribed from the same promoter 
(Methods).  This approach identified 44,639 active promoters (FPKM >0.1 in at least 1% of the 
patient cohort; Table 1). Since promoters were found to be recurrently mutated in cancer9,10, we 
specifically investigated the mutational burden in a 200bp window upstream of annotated 
promoters in the subset of the PCAWG cohort with matched  expression and genome 
sequencing data (Figure 3a). The overall numbers of non-coding mutations in promoters reflect 
the number of mutations observed genome-wide, with melanoma showing the highest numbers 
(Figure 3b). Only 327 promoters show mutations in more than five samples, the majority of 
which occurs in Skin-Melanoma and Lymphoma  (Figure 3c). Promoter mutations in Skin 
Melanoma are expected due to decreased nucleotide excision repair49,50, and frequent 
mutations in lymphoma can be attributed to activation-induced cytidine deaminase (AID), 
suggesting that functionally impactful mutations are rare. Indeed, the genes with the highest 
numbers of promoter mutations are TERT, CXCR4, PAX5 and CIITA, among which only the 
TERT gene that encodes the Telomerase Reverse Transcriptase, a core component of the 
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Telomerase complex, was found to be a driver mutation (Figure 3d)10,51–53, indicating that 
functionally impactful mutations are not very common (Figure 3c,d). When we calculated the 
pan-cancer association between promoter mutation burden and promoter activity, we found one 
significant association involving the possibly non-coding transcript C12ORF77 with unclear 
biological relevance (Extended Data Figure 18). The major limitation for this analysis is a lack 
in power: firstly, driver mutations are very rare and only a subset of samples have both 
expression and mutation data, and secondly there is a reduced sensitivity to detect mutations in 
promoters compared to other genomic regions due to their GC content53. This effect is 
particularly pronounced for the TERT promoter53, which nevertheless showed the highest 
number of non-coding promoter mutations (Figure 3d). Promoter mutations have been 
described for the TERT gene10,51,52. TERT has three annotated promoters, the most frequent 
mutation occurs at the first promoter, which also includes a UV-related mutation hotspot (Figure 
3e). While TERT does not show a significant association in the pan-analysis, we find that TERT 
promoter mutations are associated with increased promoter activity in individual cancer types10 
(Figure 3f). However, the high number of promoter mutations makes TERT an exceptional 
example compared to all other promoters. Overall, we find that promoter mutation burden is 
rarely associated with a change in promoter activity and gene expression in the PCAWG cohort. 

Intronic mutations associated with splicing and exonization  
We identified and quantified alternative splicing using SplAdder54, focussing on six splicing 
events types. We found an increase of unannotated alternative splicing events in tumor samples 

compared to non-tumor samples; for example, there are ≈30% more detected cassette exon 

events in Liver tumor samples than in matched normals or tissue matched GTEx samples 

(316,522 tumor, 279,148 normal, 234,710 GTEx; Extended Data Figure 19a). In total, 
SplAdder detected 595,041 alternative 3’, 386,734 alternative 5’, 1,226,253 cassette exon, 
755,589 intron retention/novel intron, 47,889 coordinated exon skip and 505,515 mutually 
exclusive exon events in at least one sample of the cohort with Lymph-BNHL, Lymph-CLL, and 
Ovary-AdenoCA having the most novel events (Table 1, Extended Data Figure 19b). While 
splicing of samples from the same histotype covaries, we observe differences between GTEx 
and PCAWG cohorts (Extended Data Figure 19c).  
 
Based on our observations of a globally changed splicing landscape, we sought to specifically 
understand the relation between splicing changes and somatic mutations within introns and to 
overcome limitations of exome-only studies that are unable to characterize mutations further 
into the intron beyond the conserved GT/AG donor/acceptor consensus positions. 
  
Focusing on cassette exon events which was the most frequently observed class of alternative 
splicing, we integrated the quantification of splice events with somatic variants and identified 

5,282 mutations near exon-intron boundaries, 1,800 (34%) of which had a large impact (|Z-

score| ≥ 3) (Supplementary Table 9). Consistent with previous findings using exome-
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sequencing55, a majority of mutations overlapping essential dinucleotides of the 5’ and 3’ splice 
sites have a strong effect on local splicing, 61% and 57%, respectively (Figure 4a). Relative to 
a background mutation rate at random intron positions, we found strong associations between 
splicing outliers and mutations directly at or adjacent to splice sites, with the signal extending 
much further into the intron. Nearly a third of all mutations 226/469 in a window of 5nt into the 
intron from the 5’ site were considered impactful. (Figure 4a, top). Almost all impactful 
mutations had a negative effect on splicing (Figure 4a bottom, Z-score ≤ -3) and only very few 

cases (4% total) enhanced splicing efficiency (Figure 4a bottom, Z-score ≥ 3). Altogether, these 
results suggest that somatic mutations in the extended splice site region can be as detrimental 
to splicing as those in the canonical GT-AG dinucleotides. 
 
For mutations in or near the poly-pyrimidine tract, we found a significant enrichment for 
mutations linked to outlier splicing (Figure 4a). Although it is known that trans factors that assist 
in branch site recognition, like SF3B1, are recurrently mutated in various cancer types56, a pan-
analysis of the impact of branch site associated mutations in cis has not been performed. Based 
on recent branchpoint annotations57,58, we found 23 impactful mutations at branch site 
adenosines (Figure 4a (middle), Figure 4b, Supplementary Table 10). Further, we measured 
positive selection for somatic mutations associated with splicing alterations at a gene-level using 
a permutation test. Our analysis recovered two known tumor suppressor genes, TP53 and 

FANCA (FDR ≤ 1%) (Supplementary Notes, Supplementary Table 11). 

  
Complementing our analyses of global shifts in the splicing landscape, we also studied the 
contribution of rare splicing associated variants (SAV) that appear in only a small number of 
samples. We applied the SAVNet approach59 which was designed to identify associations 
between rare somatic variants and local changes in alternative splicing (Methods, FDR ≤ 10%, 

Extended Data Figure 19d). SAVs can have various consequences, ranging from the 
disruption of existing donor and acceptor motifs, to the creation or activation of novel splice 
sites. In total, we could identify 1,901 SAVs (555/827 acceptor/donor disruptions, 155/364 
accept/donor creations) (https://www.synapse.org/#!Synapse:syn3107126). Notably, 1,066 
affected canonical splice sites, while the other 806 disrupted non-canonical sites or created 
novel splice sites. Interestingly, we find a two-fold enrichment of cancer genes in SAVs 
(Extended Data Figure 19e). 
 
Although we find that splice site creating SAVs (scSAVs) strongly concentrate near exon-intron 
boundaries (Extended Data Figure 19f), 46.7% of scSAVs are further than 100bp away from 
the nearest annotated exon. Mutations at those sites generally changed the sequences towards 
the donor/acceptor motif consensus (Extended Data Figure 19g), providing further evidence 
for the creation of novel functional splicing motifs. Focusing on novel splice sites deep in introns, 
we analyzed the extent of exonizations – the formation of novel exons within an intron. To 
estimate the number of such events within the PCAWG cohort, we filtered all cassette exon 
events to retain only those that do not occur in the annotation, normal samples, or the GTEx 
outgroup. Out of 67,254 novel cassette exons, we characterized 3,941 (6%) as exonization 
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events with 45 being located in direct vicinity to somatic alterations  (Figure 4c, Supplementary 
Table 12). Several of those occur in cancer related genes, such as STK11 (Figure 4d), a well 
known tumor suppressor kinase acting on AMPK family proteins. As expected, the exonization 
event would cause a frameshift in STK11. 
  
As shown previously, Alu sequences can have a strong impact on exonization60,61. They contain 
elements resembling consensus splice sites, that together with activating mutations, can lead to 
the formation of consensus splice sites to become a novel exon (Figure 4e). We found a 
significant enrichment of scSAVs within annotated Alu sequences (P=2.8⋅10-9), particularly for 
Alus inserted in antisense direction (P=2.6⋅10-15) (Figure 4f). Using pairwise alignments of each 
Alu sequence overlapping an SAV against the Alu consensus as a reference coordinate system, 
we found several hotspots of newly created splicing donor and acceptor sites, especially at 
position 279 close to the poly-T stretch (Extended Data Figure 18h). Our results indicate that 
Alu sequence exonization, extensively studied in the context of primate genome evolution, is 
also frequently observed in cancer genome evolution.  

Patterns of gene fusion distribution across cancer indications  
Gene fusions are an important class of cancer-driving events with therapeutic and diagnostic 
values62. We identified a total of 925 known and 2,372 novel cancer-specific gene fusions by 
combining the output of two fusion discovery methods and genomic rearrangement (SVs) 
information, and several filters were implemented to exclude artefacts or those also present in 
the GTEx or normal PCAWG samples63 (Methods, Table 1). Although most gene fusions 
appear only in one sample, we found that some of the fusion partners are highly recurrent 
(Extended Data Figure 20a). 
 
For the 3,540 identified fusion events representing 3,297 unique gene fusions, we categorized 
them based on novelty, recurrence, known oncogenic gene partners for downstream analyses 
(Figure 5a, Table 1). Similar to what was observed in the TCGA tumors cohort previously64, the 
average number of putative gene fusions per sample varies considerably across histological 
types (mean=3, median=2, sd=3). Most of cancer types (10 of 27) have less than one fusion per 
sample, while soft tissue-leiomyosarcoma harbour ~14 fusions per sample on average.  
 
Only 71 of the 2373 (~3%) novel fusions were recurrent, with the majority occurring only in one 
histotype, while 7 were found across multiple histotypes. Of the 27 most recurrent gene fusions 
(Extended Data Figure 20a), 8 have been previously reported (e.g., CCDC6-RET65, FGFR3-
TACC366, TMPRSS2-ERG, ESR1-CCDC170, PTPRK-RSPO3) or independently detected in the 
TCGA cohort67(e.g., GNS-NUP107, TRIO-TERT), while 6 were putative novel fusions including 
NUMB-HEART4, AFM-FBF1, ESR1-AKAP12, and TRAF3IP2-FYN. In addition to coding region 
fusions, we also observed 105 fusion transcripts involving the UTR regions of one gene and the 
complete coding sequences of another. These include a known fusion TBL1XR1–PIK3CA in a 
breast tumour and a notable novel example CTBP2-CTNNB1 in a gastric tumour, in which the 
overall transcriptional output of CTNNB1 is elevated, indicating a potential novel activation 
mechanism of oncogenes (Extended Data Figure 20b).  
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Although most involved genes engaged with only one fusion partner, 35 genes had more than 
five partners. These “promiscuous” genes tended to be selective in being either a 5’ or 3’ 
partner, and were overrepresented in cancer census genes and in PCAWG's cancer driver 
genes (one tailed Fisher's exact test, odds ratio (OR)=8.66, P≤1.1e-15 and (OR)=12.27, 
P≤2.2e-16, respectively). Network analysis of promiscuous genes and their partners revealed 
that most genes belonged to small clusters but several larger clusters emerged. Focusing on 
clusters with at least 10 genes (Figure 5b), we found that they were significantly enriched in 
cancer-related pathways (Benjamini-Hochberg corrected P ≤ 0.01) and in protein-protein 
interactions (P < 1.0e-7). For example, the known oncogene BCL6 was involved in 15 different 
fusions, mostly as a 3' partner with the breakpoints conserved. All such fusions contained the 
intact exon 2 of BCL6 and seemed to co-opt the regulatory sequences of their 5' fusion 
partners. This pattern had been reported previously in primary gastric high-grade B-cell 
lymphoma68. In general, the breakpoints and their positions (3' or 5') were often conserved in 
promiscuous genes and did not show association with other genomic features such as common 
fragile sites69 (Extended Data Figure 20c), indicating that these genes tend to selectively fuse 
to other genes. Taken together the data suggests that at least some of the promiscuous fusion 
partners might play a functional role in cancer progression. 

Bridged fusions and evidence-based gene fusion classification  
Our comprehensive data create an unprecedented opportunity to understand their genetic basis 
of gene fusions. The average number of gene fusions per histological type is highly correlated 
with the average number of SVs (Pearson correlation 0.95), supporting SVs as a major cause of 
gene fusions (Extended Data Figure 20d). By examining somatic rearrangement events and 
fusions simultaneously, we found 2,618 fusion events that could be explained by single genomic 
rearrangements, with duplication as the predominant type.  
 
Notably, a large number of fusions, including known fusions, namely ETV6-NTRK370 , could not 
be associated with any single SV event. The ETV6-NTRK3 fusion was present in a head and 
neck thyroid carcinoma sample, linking exon 4 of ETV6 to exon 12 of NTRK3. We found three 
separate SVs in the same sample: i) a translocation of ETV6 (chr12:12,099,706) to 
chromosome 6 (chr6:125,106,892); ii) a translocation of NTRK3 (chr15:88,694,049) also to 
chromosome 6 (chr6:125,062,387); and iii) an additional copy number loss (chr12:12,032,501 - 
chr12:12,099,705) spanning from ETV6 intron 5 to the exact SV breakpoints 
(chr12:12,099,706), jointly bringing ETV6 within 45 kb upstream of NTRK3, a distance that 
would allow transcriptional read-through71 or splicing72 to yield the ETV6-NTRK3 fusion73 
(Figure 5d). Thus, the short chromosome 6 segment appeared to function as a bridge, linking 
two other genomic locations to facilitate a gene fusion. We term such products bridged fusions. 
This novel class of fusions are not uncommon. Out of a total of 436 fusions supported by two 
separate SVs, 75 are bridged fusions, with a median length of bridges of 3.7 kb (Methods, 
Supplementary Table 13).  
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Aside from bridged fusions, 344 additional fusions are linked to more than one SV in the same 
sample. These multi-SV fusions are collectively termed composite fusions. For example, the 
known ERC1-RET fusion was only supported by an inter-chromosomal translocation and an 
intra-chromosomal rearrangement, resulting in the connection of ERC1 to the exon 12 of RET 
(Figure 5d). While fusion transcripts formed by two adjacent genes are often thought to be 
derived from transcription-induced chimeras, such chimera formation could be facilitated by 
composite DNA rearrangements. For one of the tumours with the recurrent NUMB-HEATR4 
fusion, we detected two consecutive inversions, bringing the NUMB exon 3 within 381 bp of the 
HEATR4 exon 2 (Figure 5d), down from the natural distance of 14 kb, which would might allow 
for fusion formation by splicing.  
 
Based on the nature of underlying genomic rearrangements, we propose a unified fusion 
classification system (Figure 5d, Extended Figure 20e). Overall, we identified 75 bridged 
fusions, 284 inter-composite fusions generated by a translocation linking two genes from 
different chromosomes followed by a second intra-chromosomal rearrangement, and 125 intra-
composite fusions generated by multiple intra-chromosomal rearrangements. Notably, intra-
composite fusion partners were brought significantly closer to each other, from the median 
natural distance of 6,836 kb to the median of 7.9 kb (Wilcoxon Rank Sum Test, P < 2.2e-16, 
Figure 5c). Inter-composite fusion partners also exhibited similarly short gene distances post-
translocation (Figure 5c).  
 
While most fusions had direct or composite SV support, for the remaining 18%, including known 
fusions like RHOH-BCL674,we did not detect SV evidence. Thus, either these genes were fused 
directly at the RNA level or the underlying supporting SVs escaped detection. The latter was 
evidenced by an observation that known fusions, such as TMPRSS2-ERG75, did not have 
consistent SV support in all samples where it was detected (in 4 out of 6 samples this fusion 
was supported by a deletion, while in the other two samples it did not have any SV support). On 
the other hand, the 340 SV independent, intra-chromosomal fusions had significantly closer 
breakpoints than those with SV support (Extended Data Figure 20f). Since read-throughs for 
such close-by genes have been observed previously73, it is likely that certain functional fusions 
can also be generated by RNA readthrough events.  

Pan-cancer unified analysis reveal diverse modes of RNA-level 
alterations 

Given our comprehensive set of RNA alterations, we sought to characterize the heterogeneous 
mechanisms of cancer genome and transcriptome alterations. To enable joint analyses of RNA 
and DNA alterations, we created a gene-level table, indicating the presence or absence of 
putatively functional events for each gene and patient. Alterations at the nucleotide, amino acid, 
exon, transcript, or gene level, were all mapped onto the most likely affected gene (Methods), 
and were filtered to exclude types of events that were unlikely to cause functional changes, 
such as synonymous substitutions or short in-frame insertions or deletions. In particular, we only 
retained non-synonymous SNVs and RNA editing events as well as splicing events that either 
induce a frameshift or the alternative region contains an HGMD variant76 of the category 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/183889doi: bioRxiv preprint first posted online Sep. 3, 2017; 

https://paperpile.com/c/v7gzl6/Y1mRF
https://paperpile.com/c/v7gzl6/BoaxV
https://paperpile.com/c/v7gzl6/47Grz
https://paperpile.com/c/v7gzl6/C896w
http://dx.doi.org/10.1101/183889
Giannis
Highlight



13 

“damaging” (Methods). For quantitative alteration types (expression, splicing, alternative 
promoters, allele specific expression), the most extreme samples with outlying values within 
histotype were selected (Methods, Extended Data Figure 1c). The resulting binary gene-level 
table of RNA alterations enables meta-analyses of aberrations across patients, genes, 
pathways and in specific histotypes. We found no significant correlation between the sample 
purity and the frequency of outliers (Extended Data Figure 21). Over all genes, samples, and 
alterations we selected 1,871,689 events for further analysis, which was 1.17% of all alteration 
events. It should be noted that we chose to only include RNA alterations with potential functional 
effects and with strongest quantitative impact, resembling similar strategies for filtering DNA 
alterations (Methods)77. The exact number of alterations for each of the alteration types does 
depend on filter parameters and those were chosen to have a low observed alteration frequency 
across the samples. A summary of all identified RNA alteration events is given in Table 1 and 
Supplementary Table 14. 

Building on the gene-centric table, we characterized gene alterations at the RNA-level and 
contrasted these with DNA alterations (non-synonymous SNVs, SCNAs) identified through 
whole-genome sequencing analysis from the PCAWG consortium 78. To check the quality of the 
gene-level tables, we tested whether each of the alteration types exhibits cancer specificity. We 
performed gene set enrichment analysis for top genes ranked by their recurrence within each 
alteration type against the union of COSMIC cancer census genes79 and driver genes identified 
in the PCAWG cohort80. We found that all eight alteration types, six RNA and two DNA 
alterations, had a significant enrichment for cancer census genes as well as PCAWG driver 
genes (FDR ≤ 5%, hypergeometric test).  
 
When comparing gene alteration frequencies across all histotypes (Figure 6a, Extended Data 
Figure 22), we note that different cancer types harbor distinct combinations of DNA- and RNA-
level alterations (Figure 6a). While, as expected, skin melanoma significantly exceed other 
cancers in the number of non-synonymous SNVs81 (Wilcoxon Rank Sum Test, P < 0.012), 
lymphatic cancers have low numbers of SNVs (Wilcoxon Rank Sum Test, P = 5.3⋅10-15) but high 
incidences of alternative splicing (Wilcoxon Rank Sum Test, P < 2.2⋅10-16). While the overall 
numbers of gene fusions are dwarfed by other types of alterations across cancer types, breast & 
ovarian adenocarcinomas and soft tissue-leiomyosarcoma are more profoundly impacted by 
gene fusions (Wilcoxon Rank Sum Test, P < 1.2⋅10-6). Although oligodendrogliomas have 
relatively low number of SCNAs and non-synonymous SNVs (Wilcoxon Rank Sum Test, P = 
0.0061, 1.1⋅10-6), their RNA-level alterations are more comparable with other tumor types, 
suggesting that transcriptomic alterations can be more impactful in certain cancer indications.    
 
To evaluate the extent that RNA changes provide additional mechanisms for cancer gene 
alterations, we examined DNA and RNA-level alterations both in individual genes (Extended 
Data Figure 23a) and in sets of genes in pathways with known roles in cancer82,83 (Figure 6b). 
We found that RNA alterations occur at a high proportion in many pathways, including the TOR 
and metabolism pathways. Even for genes or pathways typically associated with high non-
synonymous alterations, such as the p53 pathway, there are also a sizable proportion of RNA 
alterations. Among the 576 samples altered in the p53 pathway, 131 (22.7%) of them carried 
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only RNA alterations, indicating that neglecting transcriptomes would underestimate the degree 
of cancer pathway alterations. MDM2, in particular, is more frequently altered via RNA 
alterations than DNA alterations, while TP53 is altered primarily through non-synonymous SNVs 
(Extended Data Figure 23b) although 13% of all TP53-impacted tumors exhibited changes at 
both DNA and RNA levels (Extended Data Figure 23c). In addition, while IDH1 is 
predominantly altered at the DNA level in oligodendroglioma, its alterations in stomach 
adenocarcinoma are almost exclusively at the RNA level (Extended Data Figure 23a), 
indicating diverse modes of gene alterations that vary by histotypes.  

Co-occurrence of RNA and DNA alterations  
The diverse types of alterations in this study enabled us to investigate trans-associations 
between different genetic and expression characteristics. Indeed, known genetic associations, 
such as the co-occurring mutations of KRAS and PIK3CA84, and those between LATS2 and 
NF285, could be recapitulated in this study (Extended Data Figure 24a). We then performed 
systematic co-occurrence analysis to identify all significant trans-associations involving cancer-
related genes (FDR ≤ 5%, see Methods). By investigating how somatic mutations of known 

cancer genes may impact the expression of other genes, we found MYC and NFKBIE to be 
widely linked to dysregulation of many genes (Figure 7a), consistent with their known 
transcriptional regulatory roles in cancer86–89. Among other top-ranking genes, CCND3 
mutations co-occurred with MYC mutations (P = 6⋅10-14), in agreement with their reported joint 
function in cancer90. Notably, B2M mutations are associated with multiple expression changes 
(Figure 7a, Extended Data Figure 24b). Pathway enrichment analysis of the top 100 genes 
associated with all B2M alterations, including gene fusions and expression outliers, indicates 

that the most impacted genes are involved in immune systems and DNA repair (FDR ≤ 1%) 

(Figure 7b, Extended Data Figure 24c). B2M encodes an MHC I heavy chain protein involved 
in antigen presentation and has been previously linked to immune escape91. In Lymph-BNHL, 
the histotype with the most B2M altered tumors, donors with altered B2M tend to carry more 
non-synonymous mutations (Wilcoxon Rank Sum Test, P = 0.0097) (Extended Data Figure 
24d). Therefore, we hypothesize that tumours with B2M alterations may better tolerate DNA 
repair deficiencies. 
 
Conversely, we also examined how cancer related genes could be regulated by others through 
detected co-occurrences. By focusing on genes involved in splicing, we found PRPF6, 
previously reported to preferentially alter splicing of growth regulation genes and thus drive 
cancer proliferation92, to be linked to 16 alternative splicing events of cancer genes (FDR ≤ 5%) 
(Extended Data Figure 24e). Notably, expression outliers of DDX23 co-occurred with aberrant 
splicing of a large number of cancer-related genes, including MDM2 and TSC2 (Figure 7c). 
DDX23 encodes a component of the U5 snRNP complex and is involved in nuclear pre-mRNA 
splicing, suggesting a possible role of DDX23 in regulating the splicing of cancer-related genes. 
Similarly, multiple types of alteration of SAMD4B are associated with the expression outlier of a 
panel of cancer-related genes such as MAPK1 and VHL (Figure 7d). In particular, SAMD4B 
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and the tumor-associated TRRAP gene showed co-occurrence for multiple types of alteration 
(Figure 7e). SAMD4B is a gene with limited functional information but has been reported to 
inhibit TP53 and AP-1 activities93, so it is reasonable to speculate that SAMD4B regulates the 
expression of key cancer genes. Overall, the trans-associations we uncovered add novel insight 
into the regulatory network in cancer.  
 

Associations between somatic mutational signatures and gene 
expression 
Global variations in mutational patterns can be quantified using mutational signatures, which tag 
mutational processes specific to their tissue-of-origin and environmental exposures94. However, 
a pan-cancer analysis of the relationship between genome-wide mutational signatures and gene 
expression levels has not been explored yet.  

We considered 28 mutational signatures derived using non-negative matrix factorization of 
context-specific mutation frequencies in the PCAWG cohort (PCAWG-7 beta 2 release95). We 
tested for association between signature prevalence in patients and total gene expression, 
accounting for total mutational burden and other technical and biological confounders 
(Methods). This identified 1,176 genes associated with at least one signature (FDR ≤ 10%, 
Extended Data Figure 25, Supplementary Table 15), a markedly different set of genes 
compared to associations with total mutational burden alone (Supplementary Table 15). 
Lymphoma Signature 9 showed the largest number of associations, followed by the smoking-
related Signature 4 (Figure 8a, Supplementary Table 15).  

While some signatures have clear aetiologies, others are not fully characterized. To annotate 
these signatures de novo, we considered 18 signatures with 20 or more associated genes 
(Methods, Extended Data Figure 26) and assessed enrichment using GO categories96,97 and 
Reactome Pathways96,97. We found that 11 signatures were enriched for at least one category 
(FDR ≤ 10%, Supplementary Table 15), revealing associations consistent with known 
aetiologies (Figure 8a). For example, Lymphoma Signature 9 was associated with 354 genes 
enriched for lymphocyte/leukocyte-related processes and immune response, including TCL1A, 
LMO2 and TERT (P=1.2⋅10-10, 6.8⋅10-10, 2.0⋅10-09). The smoking Signature 4 was associated 
with 119 genes enriched for biological oxidation processes (e.g., benzo[a]pyrene) and including 
CYP24A1, a gene that is known to be down-regulated in tobacco-smoke exposed tissue98 
(Figure 8b). The 70 genes associated with APOBEC Signature 2 were significantly enriched for 
DNA deaminase pathways.  

Among signatures with unknown aetiology, our results link Signature 8, prevalent in 
medulloblastoma, to 25 genes enriched for ABCA-transporter pathways. Drugs targeting these 
pathways are currently in clinical trials for treating medulloblastoma97,99. Signature 38, which is 
correlated with the canonical UV Signatures 7 (e.g., 7a: r2=0.375, P=5⋅10-40, Extended Data 
Figure 26c), was linked to melanin processes (Figure 8a). Melanin synthesis causes oxidative 
stress to melanocytes100,101 and we found Signature 38 associated with the oxidative stress 
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promoting gene TYR102 (P=1.0⋅10-4). A hallmark of Signature 38 are C>A mutations, also a 
typical product of reactive oxygen species mediated by activity of 8-hydroxy- 2′-deoxyguanosine 
(DFG, 2010). This suggests that Signature 38 may capture DNA damage indirectly caused by 
UV after direct sun exposure due to oxidative damage103, with TYR as a possible mediator of 
the effect.  

The cause-and-effect relationship of correlated somatic variations and gene expression 
changes are not clear a priori. We utilized germline eQTL lead variants of signature-associated 
genes as an anchor to gain directed mechanistic insight by testing for associations between 
these variants and the signature. This eQTL-based approach entails substantially fewer tests 
than genome-wide analyses104,105. Among 1,176 signature-linked genes, 197 had a germline 
eQTL, but we found only APOBEC3A/B eQTL rs12628403 to be associated with the 
corresponding Signature 2 (P=5.1⋅10-7, Figure 8c, FDR ≤ 10%, multiple testing over 197 tests, 
Supplementary Table 15), confirming it as a risk variant for Signature 2 prevalence106. 
Colocalisation107 and mediation108,109 analyses confirmed the variant as a plausible genetic 
determinant of APOBEC3A/B expression and Signature 2 prevalence (Supplementary Table 
15), with a remarkable 87.11% of the genetic effect conferred to the signature by APOBEC3B 
expression (Extended Data Figure 27, Methods).  
 
In summary, we identified global trans effects between mutational signatures and gene 
expression levels and thereby derived de novo annotations of signatures with previously 
unknown roles. 

Cancer genes are altered in cis through heterogeneous 
mechanisms 
 
In our analyses of cis-acting mutations associated with these individual RNA phenotypes, the 
vast majority were observed rarely in the PCAWG cohort. Many cancer genes (e.g., MET4,110,111) 
are known to be somatically altered through heterogeneous mechanisms such as gene fusions, 
splicing mutations, and nonsynonymous mutations; therefore, looking at genes that are altered 
through multiple cis-acting mechanisms may help to identify novel cancer genes in which an 
individual alteration type is rare. A total of 5,413 genes were altered through gene expression, 
allele-specific expression, splicing, and/or gene fusion and had an associated DNA-level 
mutation in cis (Methods, Supplementary Table 16). PCAWG-defined driver genes tended to 
have more diverse mechanisms of RNA-level alterations when compared to genes that have not 
been previously identified as a cancer gene (P < 0.001) (Figure 9a). We identified, for instance, 
a somatic eQTL, a splicing associated variant, and fusions in the known tumor suppressor NF1 
in the MAPK pathway (Figure 9b). Another gene with a somatic eQTL, a splicing associated 
variant, and a fusion event was PTGFRN, a gene currently not in the COSMIC cancer gene 
census (Figure 9c). Interestingly, both the fusion event and splicing event preserve the frame of 
the resulting gene products. Further investigation is necessary to understand the functional 
impact of these RNA alterations. 
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Known and novel candidate driver genes are recurrently altered at the 
RNA-level 
Previous pan-cancer analyses have shown that most somatic mutations occur in a small 
number of genes, and that these alterations are rare83,112,113. Due to lack of recurrence of 
observed alterations, it has been difficult to statistically distinguish functionally relevant, potential 
driver alterations from passenger alterations. To take advantage of the large variety of DNA and 
RNA alterations available in this study and motivated by the great diversity of alterations in 
known driver genes (Figure 9), we aimed to identify genes that are both recurrently and 
heterogeneously altered, under the hypothesis that these genes have increased functional 
relevance.  
 
This analysis identified 1,012 genes with significant recurrent aberrations (FDR < 5%, Figure 
10a, permutation-based significance estimation, Methods), with the top ranking genes carrying 
both RNA and DNA aberrations, where RNA alterations account for 13.0-99.4% (mean: 81.4%) 
of all identified alterations in each gene (Figure 10a, 10b, Supplementary Table 17). This 
ranking is enriched for the union of cancer census genes79 (101/603) and PCAWG-defined 
driver genes (51/157, P=5⋅10-26, enrichment 2.82, Figure 10c). TP53 has nearly the highest 
proportions of DNA alterations (71.8% DNA alterations, 413/575)  and IGF2 has the highest 
proportion of RNA alterations (98.5% RNA alterations, 263/267). Furthermore, when we 
specifically look at the two most frequent alterations for each gene, a majority (75.1%) of the 
alterations are at the RNA-level (Figure 10d). While the total number of RNA alterations does 
depend on the selected filter parameters, it appears reasonable to conclude that RNA 
alterations are more likely to occur than DNA alterations for most genes.  
 
Among the top 5% (51/1012) of our ranked genes is CDK12 (rank 40), which is impacted by 
multiple but non-overlapping types of alterations. Alterations within its protein kinase domain 
have been shown to cause dysregulation of DNA repair in cancer114–117. Aggregating over all 
alterations, we find 87 samples that have an alteration in this domain, with 64 (74%) patients 
having no DNA, but only a RNA alteration in the domain. The most frequent alteration in this 
gene is an alternative promoter event, where the alternative promoter leads to a truncated 
transcript of CDK12, removing a majority of the kinase domain. Fusion and splice events lead to 
additional disruptions of the same domain. While we have not selected for mutual exclusivity, 
we find that the alterations in this gene are marginally mutually exclusive (P=0.07, WExT118). 
This gene has previously also been classified as cancer census79 and PCAWG driver gene80. 
This example illustrates that performing a recurrence analysis over diverse RNA and DNA 
alterations can help to identify genes known to be important in tumorigenesis.  
 
Our recurrence analysis of heterogeneous RNA alterations also identifies 894 genes that are 
neither known cancer census nor driver genes. This includes IRF5119–122, ZFAT123, BCAS3124,125, 
KLF13126, TLK2127–129, and COL6A3130,131, providing new hypotheses for follow-up studies. 
Those genes may have received less attention because they harbor only rare DNA alterations. 
The results of our study can also help to understand which parts of the transcripts are altered 
and functionally affected.  
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Discussion 
Here we present the most comprehensive catalog of RNA-level alterations in cancer, spanning 
27 different tumour types, and provide a harmonised resource of matched transcriptome and 
whole-genome sequences. In particular, our catalogue includes gene and transcript expression, 
splicing, alternative promoter, fusion and their association with somatic DNA-level alterations 
across more than one thousand patients.  
  
We identified 1,012 genes that are recurrently altered by multiple mechanisms (both on DNA or 
RNA level), which were enriched for known cancer census genes and driver genes as identified 
in the PCAWG cohort. The list of recurrently altered genes includes genes that are primarily 
altered at the DNA level (such as TP53), but also genes that are most frequently altered on the 
RNA level (such as IGF2132). Through the analysis of RNA alterations, we can identify additional 
gene alterations in samples that otherwise were thought to have no driver alterations based on 
DNA level analysis alone. In fact, out of 87 samples from the PCAWG study that did not have a 
driver alteration at the DNA-level 133 and also had RNA-Seq data, every sample had an RNA-
level gene alteration that was identified through our recurrence analysis. Although cancer is 
thought to primarily be driven by changes in DNA, such somatic changes may lead to 
systematic changes on RNA level. Even though, it is also possible that most of the detected 
RNA alterations, like most somatic mutations, are passenger events, the cancer gene 
enrichment/pathway analysis suggests that a subset is likely to contribute to cancer. Follow-up 
validation studies are needed to determine which RNA alterations are functional.  
  
Our work represents comprehensive analysis of gene expression regulatory variation across 
human cancers, combining eQTL mapping, ASE analysis and expression-linkages with somatic 
signatures. We identified germline eQTL for around 19% of expressed genes (3,509 out of 
18,898), out of which only a small proportion of 426 genes appeared to be specific to cancer 
(defined as not found in GTEx). This suggests that the germline regulatory variants are largely 
retained in disease, although some cancer-specific regulatory effects could play important roles. 
Building on ASE quantifications, we attributed allelic expression dysregulation to distinct classes 
of  genetic variations, showing that the allelic copy number imbalance is a major determinant of 
allele-specific expression dysregulation in cancer. We have also mapped individual linkages 
between somatic aberrations in cis and individual genes (649 out of 18,898), where 68.4% of 
associations were between non-coding somatic variants and gene expression (272 intergenic, 
172 intronic). In addition to cis associations, we have also identified global trans effects between 
somatic signatures and gene expression levels, thereby deriving de novo annotations of 
signatures with previously unknown roles.  
  
We have specifically looked at the effects of somatic mutations in gene promoter regions. 
Except for the TERT promoter, recurrent promoter mutations are rare and we did not observe a 
strong association with expression nor with alternative promoter usage. The analysis of 
alternative promoters relies on isoform quantification, which has several limitations and is 
generally less robust than gene-level analyses. Nevertheless, the recurrence analysis of RNA 
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phenotypes suggests that even without a significant association with promoter mutations, they 
still contribute to an altered cancer transcriptome. 

We identify a broad relationship between somatic alterations and splicing changes looking at 
mutations further into the intron than was feasible with exome sequencing. We found 
enrichments of impactful mutations on splicing in extended splice site regions, the 
polypyrimidine tract, and the branch site position. Overall, we identify 1,872 splicing associated 
variants (SAVs) that are characteristically rare. We also found 3,941 novel cancer-specific 
exons that can be partially explained through mutation-driven exonization, including in the tumor 
suppressor STK11. Enrichments of exonization events overlapping to Alu sequences provides a 
link between genome evolution and cancer evolution and give hints on the exonization 
mechanism. These insights illustrate the power of whole genome sequencing data studied in 
this project. 

This study, also for the first time, systematically compares and integrates gene fusions with 
whole genome rearrangements across many tumour types. Most of the novel fusions were 
found in only one sample and the low sample numbers make it difficult to distinguish 
passengers from drivers. On the other hand, the promiscuous fusion gene partners were often 
linked to cancer related pathways, thereby indicating a possible functional role in cancer. While 
~36% of all detected fusion transcripts were predicted to be in-frame, several UTR-mediated 
fusion transcripts preserve complete coding sequences of one fusion partner. These include a 
known fusion TBL1XR1–PIK3CA in a breast tumour and a notable novel example CTBP2-
CTNNB1 in a gastric tumour. About 82% of the detected fusions can be associated with specific 
genomic rearrangements. For the remaining fusions, it is entirely possible that the relevant 
genomic rearrangements have not been detected, or it is also possible that some fusions 
happen directly on RNA level, as trans-splicing or readthrough events. The availability of whole 
genome sequences in addition to RNA, allowed us to develop a systematic classification of 
fusion events, and proposed a novel bridged fusion mechanism to explain how genome 
rearrangements can lead to a gene fusion. 

We show that global differences in RNA expression phenotypes are largely tissue-specific; 
therefore our ability to associate mutations in cis or trans are limited by the small sample size 
within each histotype. Although genetic associations to individual RNA phenotypes were rare, 
we found that genes altered through heterogeneous mechanisms were enriched for cancer 
genes, highlighting the importance of examining multiple ways that cancer genes can be 
altered. We recognize that further work is necessary to investigate additional mechanisms of 
genome alteration that can lead to changes in RNA such as epigenetic changes 134 or enhancer 
hijacking (e.g., 135,136), and our work points to the importance of further investigations. Overall, 
our analysis shows diverse modes of alteration of cancer genes and pathways at the DNA and 
RNA level and reveals underappreciated mechanisms of cancer genome alterations confirmed 
through RNA changes. This demonstrates that RNA analysis reveals cancer-associated 
pathway alterations that have not yet been detected via exclusive DNA analysis.  
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Methods 

RNA-Seq alignment and quality control analysis 
Normal and tumour ICGC RNA-seq data, included in the PCAWG cohort78, was aligned to the 
human reference genome (GRCh37.p13) using two read aligners: STAR 137 (version 2.4.0i, 2-
pass), performed at MSKCC and ETH Zürich, and TopHat2138 (version 2.0.12), performed at the 
European Bioinformatics Institute. Both tools used Gencode (release 19) as the reference gene 
annotation. For the STAR 2-pass alignment, an initial alignment run was performed on each 
sample to generate a list of splice junctions derived from the RNA-seq data. These junctions 
were then used to build an augmented index of the reference genome per sample. In a second 
pass, the augmented index was used for a more sensitive alignment. Alignment parameters 
have been fixed to the values reported in (https://github.com/akahles/icgc_rnaseq_align). The 
TopHat2 alignment strategies also followed the 2-pass alignment principle, but was performed 
in a single alignment step with the respective parameter set. For the TopHat2 alignments the 
irap analysis suite 139 was used. The full set of parameters is available along with the alignment 
code in (https://hub.docker.com/r/nunofonseca/irap_pcawg/). For both aligners, the resulting 
files in BAM format were sorted by alignment position, indexed, and are available for download 
in the GDC portal (https://portal.gdc.cancer.gov/) and in the Bionimbus Data Cloud 
(https://bionimbus-pdc.opensciencedatacloud.org/pcawg/). The individual accession numbers 
and download links can be found in the PCAWG data release table: 
http://pancancer.info/data_releases/may2016/release_may2016.v1.4.tsv.  
 
Quality control of all datasets was performed at three main levels: i) assessment of initial raw 
data using FastQC 140 (version 0.11.3); ii) assessment of aligned data (percentage of mapped 
and unmapped reads for both alignment approaches); iii) quantification (by correlating the 
expression values produced by the STAR and TopHat2 based expression pipelines) (Extended 
Data Figure 1).  In total we defined 6 QC criteria to assess the quality of the samples. We 
marked a sample as a candidate for exclusion if: (1) three out five main FastQC measures 
(base wise quality, k-mer overrepresentation, guanine-cytosine content, content of N bases and 
sequence quality) did not pass; (2) more than 50% of reads were unmapped or less than 1M 
reads could be mapped in total using the STAR pipeline; (3) more than 50% of reads were 
unmapped or less than 1M reads could be mapped in total using the TopHat2 pipeline; (4) we 
measured a degradation score 141 greater than 10; (5) the fragment count in the aligned sample 
(averaged over STAR and TopHat2) was less than 5M; (6) the correlation between the 
expression counts of both pipelines was less than 0.95. If a sample did not pass one of these 
six criteria it was marked as problematic and were placed on a graylist. If more than two criteria 
was not passed, we excluded the sample. 
 
A subset of 722 libraries from the projects ESAD-UK, OV-AU, PACA-AU, and STAD-US were 
identified as technical replicates generated from the same sample aliquot. These libraries were 
integrated post-alignment for both the STAR and the TopHat2 pipelines using samtools142 into 
combined alignment files. Further analysis was based on these files. Read counts of the 
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individual libraries were integrated to a sample-level count by adding the read counts of the 
technical replicates. 
 
Initially, a total of 2,217 RNA-seq libraries were fully processed by the pipeline. QC filtering and 
integration of technical replicates (722 libraries) gave a final number of 1,359 fully processed 
RNA-seq sample aliquots from 1,188 donors. 

GTEx data analysis 
For a panel of normal RNA-Seq data from a variety of tissues, data from 3,274 samples from 
GTEx (phs000424.v4.p1) were used and analyzed with the same pipeline as PCAWG data for 
quantifying gene expression. A list of GTEx identifiers are provided at 
https://www.synapse.org/#!Synapse:syn7596611. 

Quantification and normalization of transcript and gene expression  
STAR and TopHat2 alignments were used as input for HTSeq14 (version 0.6.1p1) to produce 
gene expression counts. Gencode v19 was used as the gene annotation reference. 
Quantification on a per transcript level was performed with Kallisto143 (version 0.42.1). This 
implementation is available as a Docker container at 
https://hub.docker.com/r/nunofonseca/irap_pcawg. The implementation of the STAR and 
TopHat2 quantification is available as Docker containers in: 

● https://github.com/akahles/icgc_rnaseq_align 
● https://hub.docker.com/r/nunofonseca/irap_pcawg/ 

, respectively. Consensus expression quantification was performed by taking the average 
expression based on STAR and TopHat2 alignments. Gene counts were normalized by 
adjusting the counts to fragments per kilobase of million mapped (FPKM)144 as well as 
fragments per kilobase of million mapped with upper quartile normalization (FPKM-UQ) where 
the total read counts in the FPKM definition has been replaced by the upper quartile of the read 
count distribution multiplied by the total number of protein-coding genes.  
 
The FPKM and FPKM-UQ calculations were: 

● FPKM = (C⋅109) ⁄ (N⋅L) where N = total fragment count to protein coding genes, L = 
length of gene, C = fragment count 

● FPKM-UQ = (C⋅109) ⁄ (UQ⋅L⋅G) where UQ= upper quartile of fragment counts to protein 
coding genes on autosomes unequal to zero, G = number of protein coding genes on 
autosomes 

t-SNE analysis 
The t-SNE plot in Figure 2D was produced using the RTsne package145 (with a perplexity value 
of 18) based on the Pearson correlation of the aggregated expression (log+1) of the 1,000 most 
variable genes. FPKM expression values per gene were aggregated (median) by tissue (GTEx) 
and study (PCAWG). Coefficient of variation for each gene was also computed per tissue 
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(GTEx) and study (PCAWG) to determine the 1,000 most variable genes. Purity values were  
obtained from syn8272483. 

Associations between genetic variation and gene expression 

Patient Cohort 

We analyse the tumor whole genome sequencing (WGS) and matched RNA-Seq data of 1,188 
patients from the Pan-cancer Analysis of Whole Genomes (PCAWG) cohort. Germline 
genotypes, SNV calls and segmented allele-specific somatic copy-number alteration (SCNA) 
calls were obtained from105,146. We matched 1,188 tumor RNA-seq IDs147 to WGS white-list 
tumor IDs (synapse entry syn10389164). For patients with multiple WGS IDs (2 out of 1,188) or 
RNA-seq aliquot IDs (17 out of 1,188), we resolved the matching by pairing samples with the 
same tumor_wgs_submitter_specimen_id (Supplementary Table 1). The 1,188 patients are 
spread across 27 cancer types and 29 project codes and include 899 carcinomas; 34 patients 
are metastatic and 13 recurrent with the remaining patients being primary tumors 
(Supplementary Table 1).  

We used the data of these 1,188 patients for performing somatic and germline expression 
quantitative trait loci (eQTL) mapping, allele-specific expression (ASE) analysis and association 
studies between gene expression and mutational signatures.  

Gene expression 

Gene expression values (measured in FPKM) were obtained from the PCAWG-3 group 

(PCAWG-3 Tophat2/Star gene expression, syn5553985). Genes with FPKM ≥ 0.1 in at least 1% 

of the patients (12 patients) were retained, resulting in 47,730 genes. Only 18,898 protein-

coding genes (according to the gene_type biotype reported in Gencode v.19) were used for the 

subsequent QTL analyses. Log2 expression values were subjected to peer analysis 148 to 

account for hidden covariates (syn7850427). In order to balance number of covariates, 

statistical power and available sample sizes per cancer type, we followed the GTEx protocol 

and estimated 15, 30 and 35 hidden covariates to be used depending on sample size (N<150, 

150≤N<250, N≥250) 149. Peer residuals were then rank standardised across patients. The 
FPKM cutoff and peer correction were also applied to the subset of 899 carcinoma patients, 
yielding 18,837 protein-coding genes after filtering.  

Covariates 

In all linear models, we accounted for known confounding factors by modeling them as fixed 
effects. In all association studies, we accounted for sex, project code (describing cancer type 
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and country of origin) and per gene copy-number (CN) status (Supplementary Table 1 for the 
list of per patient covariates; syn7253568 and syn7253569 for sex and project codes; 
syn9661460 for per gene CN). Per gene CN alterations were derived as the average copy 
number across all copy number aberrations called within the annotated gene boundaries based 
on syn8042988. 

The somatic eQTL, ASE and mutational signature analyses additionally accounted for total 
somatic mutation burden (number of single nucleotide variants (SNVs) and short insertions and 
deletions (indels)) and sample purity (Supplementary Table 1). Purity was estimated based on 
CN segmentation. In addition, the somatic eQTL and ASE analyses accounted for local SNV 
burden calculated in a 1Mb window from the gene coordinates (syn8494689 for cis somatic 
burden).  

The germline eQTL analysis additionally modelled the population structure as random effect. 
The population structure was assessed by a kinship matrix that was calculated based on every 
20th germline variant, processed as described below (see Germline variants). The kinship 
matrix was then calculated as an empirical patient-by-patient covariance matrix.  

Table 1. Covariates that were accounted for per analysis method. The project code describes 
cancer type and country-of-origin. Somatic burden is the total number of SNVs and indels. 
Purity was estimated based on CN segmentation. Local somatic burden is the number of SNVs 
in a 1Mb window around the gene coordinates. Local CN was defined as the average CN state 
across all SCNAs called within the annotated gene boundaries.  

 

Gene Ontology and Reactome Pathway enrichment 

We performed Gene Ontology150,151 and Reactome Pathway152,153 enrichment with the 

Bioconductor packages biomaRt154,155, clusterProfiler156, and ReactomePA157 (FDR ≤ 10%). The 

number of genes used as background set is described per analysis method.  
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Germline eQTL 

Germline Variants 

PCAWG variant calls v0.1105 were downloaded from GNOS and processed following the 
PCAWG-8 protocol:  

1. VCF files were indexed and merged using bcftools158.   

2. All variants were filtered for PASS flag. 

3. All variants were filtered for quality larger than 20. 

4. Only bi-allelic sites were considered. 

HDF5 files for each 100kb chunk of the VCF files were generated, assuming additivity that was 
numerically encoded as 0/1/2 for homozygous reference/heterozygous/homozygous alternative 
state. For indels, we encoded the presence or absence of the variant as 0/1. Each variant was 
normalized to mean 0 and standard deviation 1. Missing variants were mean-imputed. To create 
our eQTL release set v1.0, the resulting HDF5 files were subsequently merged into a global 
HDF5 file and all variants which follow any of the following conditions were removed:  

1. Minor allele frequency (MAF) ≤ 1% 

2. Missing values ≥ 5%  

Germline eQTL analysis 

In the germline eQTL analyses, we used the processed gene expression dataset from 1,178 
patients for which germline variant calls (eQTL release set v1.0, see Germline Variants) were 
available. Linear mixed models were used to model the correlation between germline variants 
(within 100kb from gene boundaries) and gene expression values (see Gene expression) using 
the limix package159. Known covariates were modeled as fixed effects and population structure 
as random effect (see Covariates).  

A two-step approach was employed to adjust for multiple testing. First, for each gene, we 
adjusted for the number of independent tests estimated based on local linkage disequilibrium 
(LD)160. Second, we performed a global correction across the lead variants, i.e., the most 
significant SNPs, per eQTL . Germline eGenes were defined as genes with an eQTL with global 

FDR ≤ 5%.  

eQTL release set v0.1 

The germline eQTL release set v0.1 is a pilot call set that was generated before the eQTL 

release set v1.0 and was used in our ASE analysis. The eQTL sets v0.1 and v1.0 differ as 

follows. In v0.1, SNVs and indels from 1,194 patients from the Annai variant call set 
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(syn4231951 and syn4231952) were used, compared to 1,178 patients in v1.0. As these 

variants were called on a patient-by-patient basis, they were merged and a high missingness 

call rate per variant was generated due to low quality variants or to the absence of a call from 

simply being a reference allele. To solve this issue, we kept variants with missingness ≤ 20% 

across patients and inferred missing variants as the reference allele. Otherwise, we discarded 

the whole variant. We filtered variants with MAF ≤ 1%. Multiple testing was firstly applied to all 
variants tested within a cis window of 1Mb up and downstream of gene boundaries and then to 
all lead variants with a Benjamini-Hochberg procedure. Compared to v1.0, more genes were 
considered since we retained protein coding and non protein coding genes with FPKM ≥ 0.5 in 

at least 1% of the cohort (N=37,116). We obtained 5,373 eGenes (FDR ≤ 10%). Results of this 

pilot germline eQTL analysis are available on synapse (syn6157699).  

GTEx comparative analysis 

The GTEx comparative eQTL analysis was based on the eQTL maps version 6p161. We mapped 
the positions and alleles of our PCAWG-specific eQTL to the eQTL in all GTEx tissues. In order 
to determine whether a lead eQTL variant is replicated in a given GTEx tissue, we followed the 
following strategy according to Kilpinen et al. (2017)162. For each eGene, we considered the 
eQTL lead variant and assessed the replicability of the signal in the GTEx cohort based on 
marginal association statistics using matching tissue-of-origin in 23 cases (P < 0.01/23) as well 
as all 42 GTEx tissues without cell lines (P < 0.01/42). If the lead variant did not replicate or was 
not tested, we determined replication based on the variant with the smallest P value within the 
LD block (r2 ≥ 0.8 estimated based on UK10k) of the lead variant across 23 (or 42) tissue-

matched GTEx analyses. If neither lead nor any variant within the LD block were tested, we 

determined replication based on the smallest P value of any variant within the 100kb window 

tested within the GTEx cohort.  

To assess if the PCAWG-specific eQTL replicate in testis, we repeated our GTEx comparison 
while including GTEx testis tissue. We found 37 eQTL that only occur in the PCAWG cohort and 
in testis, but in no other tissue. 

Allele-specific expression analysis 

Assembling Phased Germline and Somatic Variants 

To understand the precise effect of somatic variations in their genomic context and for 
subsequent allele-specific analyses, both germline and somatic variants were phased. For 
assembling phased germline genotypes we used the Sanger 1000G callset (PCAWG-11), and 
applied IMPUTE2 (Howie et al. 2009) for phasing of heterozygous germline variants. The 
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IMPUTE2 output was corrected using results from the Battenberg CN calling algorithm (Nik-
Zainal et al. 2012) to ascertain that no haplotype switches occur within regions of consecutive 
CN gain. The resulting phased germline genotypes were arranged such that haplotype 1 always 
corresponded to the amplified alleles in regions with SCNAs (major allele). In cases where both 
co-occur on the same NGS read (~10M variants, ~20% of all SNVs), we phased individual 
somatic variants to the nearest germline heterozygous site. For downstream analyses, we only 
considered SNVs that were phased by at least three reads to the respective germline variant 
(~6M out of 10M SNVs). 

All phased SNVs were aggregated into functional categories based on their genomic regions 
defined by gene annotations (upstream, downstream, promoter, 5’ UTR, intron, synonymous, 
missense, stop gain, 3’ UTR) and mapped to the nearest gene within a cis window of 100kb 
using the Variant Effect Predictor (VEP) tool163. Promoter variants were defined as 1kb 
upstream of the transcription start site (TSS). We included flanking regions by using the VEP 
‘UpDownDistance’ plugin with a maximum range parameter of 100kb. We divided the upstream 
and downstream variant categories into disjoint categories using 10kb windows from 10 to 
100kb. We integrated ‘splice donor’ and ‘splice acceptor’ variants into the general ‘splice region’ 
variant category and mapped ‘stop retained’ variants to the ‘synonymous’ variant category. We 
averaged transcript-level annotations to gene-level annotations to retrieve the expected 
functional effect of a variant for a given gene. We analysed the relationship between SNV 
variant allele frequency (VAF) and SCNAs at the same locus to determine whether variants 
occurred before (‘early’) or after (‘late’) the corresponding SCNA (PCAWG-11). We computed a 
weighted cis mutational burden per category by estimating the cancer cell fraction (CCF) of 
each SNV and aggregating SNVs to a total localised burden weighted by their respective CCF.  

ASE read counts 

The positional information of the heterozygous germline variants was used together with the 
RNA-seq BAM files as input to the GATK ASEReadCounter (Castel et al. 2015) algorithms for 
counting ASE reads. We considered reads with a minimum mapping quality of 20 and a 
minimum base quality of 10. Only heterozygous variants with a minimum coverage of eight 
RNAseq reads were considered for all further analyses.  

The raw ASE read counts were post-processed as follows: (1) ASE sites were converted to 
BED files and aligned against the ENCODE 50mer mappability track 
(wgEncodeCrgMapabilityAlign50mer.bigWig) to extract mappability scores for all sites. All sites 
with mappability scores unequal to 1 were removed. (2) All sites with allelic read counts less or 
equal to 1 were removed to prevent genotyping error to influence ASE quantification. (3) All sex 
chromosomes were dropped for further analysis. (4) We estimated sequencing error per patient 
as the sum of non-reference and non-alternative bases over the total number of bases. We 
assessed statistical mono-allelicity through a binomial test using the estimated sequencing error 
probabilities, corrected using the Benjamini-Hochberg step down procedure. All sites that 
appeared to be statistically mono-allelic were removed. (5) For each ASE site, CN states were 
retrieved from the Sanger CN consensus callset (PCAWG-11). Purity estimates for each 
patients were retrieved from the accompanying purity tables.  
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To aggregate site-level ASE to a gene-level readout and to allow for estimation of effect 
directionality, we used the phased germline genotypes. Gene mapping was performed against 
ENSEMBL release 75 using the pyEnsembl Python library. We retrieved all genes at each ASE 
site and summed up the read counts on the respective haplotypes to gene-level haplotype-
specific read counts. We further averaged haplotype-specific CN states to a mean haplotype-
specific CN state per gene and computed the gene-level CN ratio as the major over total ratio of 
those averages. To allow for a robust assessment of gene-level ASE we only considered genes 
with at least 15 reads total, yielding 4,379,378 gene-patient pairs of 1,120 patients and 17,009 
unique genes across 12,441,502 accessible sites in total. Every remaining gene was tested for 
allelic expression imbalance (AEI) using a binomial test against an expected read ratio of 0.5 to 
derive nominal P values, and a binomial test against the expected CN ratio modified by tumor 
purity to derive CN-corrected P values. Nominal and CN-corrected P values were adjusted 
separately for multiple testing using the Benjamini-Hochberg procedure. Significant AEI was 
called at FDR ≤ 5%. We further annotated each gene with the number of ASE sites used for 

aggregation. For all downstream analyses, we only considered genes annotated as protein 
coding (ENSEMBL biotype=’protein_coding’).  

Generalized linear models 

Across all 4,379,378 gene-patient pairs, we trained multivariate linear models using (i) logistic 
regression against a binary indicator of AEI absence or presence in a gene or (ii) standard linear 
regression against the phased ASE ratio of a gene to assess the directionality of the regulatory 
change. For (i), haplotype-specific mutations were summed up to a total burden per category, 
whereas for (ii), we used the difference in burden between the haplotypes 1 and 2. The 
consistency of the phasing map between somatic variants and ASE sites ensured that model 
coefficients kept their directionality independent of the arbitrary labelling of haplotypes as 1 or 2. 
The full set of considered factors is as follows: 

● CN ratio at the gene locus (0.5 ≤ x ≤ 1) 
● Sample purity (0 < x < 1) 
● Natural logarithm of total gene length (x > 0) 
● Natural logarithm of the length of the canonical transcript (x > 0) 
● Heterozygosity of the lead eQTL variant (x = 0 if homozygous, x = 1 if not homozygous) 
● All mutational burden categories as determined by VEP annotations (upstream in 10kb 

windows, downstream in 10kb windows, promoter, 5’ UTR, intron, synonymous, 

missense, stop gain, 3’ UTR; x ≥ 0 for logistic model, x ∈ ℝ for directed model) 
To compare global effects and different contributions of SCNA, germline eQTL, coding and non-
coding SNVs, a simplified logistic model was trained after accumulating all coding and non-
coding variants to separate categories and reporting standardised effect sizes (Figure 5e). 
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Cancer Gene Enrichment 

Cancer Gene Enrichment was conducted on the COSMIC census (Forbes et al. 2017) using 
Fisher’s exact test and Gene Set Enrichment Analysis (GSEA) as described in the manuscript. 
For enrichment, the average score of a gene was computed across the cohort and only genes 
with at least five replicates in the cohort were kept, yielding a total of 16,078 genes. 

Chromosomal distribution of ASE 

We calculated the recurrence of ASE genes in each tumor type. To examine the chromosomal 
distribution of ASE genes, we calculated the average recurrence of all genes for every 200-gene 
window with a 10-gene step, and then subtracted the average ASE occurrence in each tumor 
type to obtain the peaks of ASE surplus across all chromosomes. The recurrence of CN genes 
was calculated in an analogous manner. 

Somatic eQTL 

Somatic calls and mutational burden  

We used the set of consensus SNVs somatic calls provided by PCAWG (syn7357330) based on 
three core caller pipelines and MuSE164. On average, we counted 22,144 somatic SNVs per 
patient, with different median numbers of SNVs per cancer type, ranging from 1,139 in thyroid 
adenocarcinoma to 72,804 SNVs in skin melanoma (Extended Data Figure 17a).  Due to the 
low frequency of somatic SNVs across the cohort (Extended Data Figure 17b), we collapsed 
the variants by genomic regions defined by gene annotations (Gencode v.19165). Specifically, 
we generated a set of disjoint gene exons by collapsing overlapping exon annotations into 
single features using bedtools166. The set of disjoint introns was generated using bedtools by 
subtracting the collapsed exonic regions from the gene regions. To map local effects of somatic 
mutations in flanking features outside the gene body, we binned the surrounding regions (plus 
and minus 1Mb from the gene boundaries) into 2kb windows overlapping by 1kb.  

We defined three different types of aggregated somatic burden to assess differences in power in 
detecting somatic eGenes and P value calibration. The burden in a genomic region was defined 
as (1) a binary value that indicates presence or absence of SNVs, (2) the aggregated burden as 
sum of SNVs, or as (3) weighted burden, i.e. sum of VAFs of the SNVs (Extended Data Figure 
18 a). Genotypes were standardised across patients (to mean zero and standard deviation one) 
and effect sizes of the association study were divided by the corresponding genotype standard 
deviation.  

We assessed calibration of all three analyses with QQ-plots of nominal and permuted P values 
(permutation of the patients in the gene expression matrix) (Extended Data Figure 18 b-d).  

Somatic eQTL analysis 

Linear models were used to model the correlation between recurrent somatic burden and gene 
expression of up to 18,898 protein-coding genes, using the limix package167 (see Gene 
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expression). Gene expression was corrected for 35 hidden peer factors. Known covariates were 
modeled as fixed effects (see Covariates).  

The somatic eQTL analysis was performed on all 1,188 patients and on the subset of 899 
carcinoma patients (representing 20 of the 27 cancer types) to replicate the analysis on a more 
homogeneous set of tumors. A cis window of 1Mb from the gene boundaries (Gencode v.19) to 

find mutated genomic intervals with a burden frequency ≥ 1% in the cohort (at least 12 patients 

in the full cohort and 9 patients in the carcinoma cohort). Altogether, 18,708 of the genes had at 

least one mutated interval at that frequency and were included in the analysis. 

Bonferroni correction was applied to correct for multiple cis windows tested within the same 

gene. Then, Benjamini-Hochberg correction was applied to adjust the P values of the lead 

genomic regions across genes. Somatic eGenes were defined as genes with an eQTL at an 

FDR ≤ 5%. 

The analysis of co-localization of SVs and somatic burden was performed per aliquot id, looking 
for the closest SV to the leading genomic interval identified for each eGene, using the 
consensus WGS-based somatic structural variants (version 1.6; syn7596712). 

Functional enrichment in somatic cis eQTL  

To identify putative regulatory sites enriched for somatic eQTL, we retrieved functional 
annotations of the lead genomic flanking intervals of the somatic eQTL (638 somatic eQTL). 
Therefore, we mapped somatic eQTL to 25 Roadmap Epigenomics chromatin marks of 127 
different cell types 168 and ENCODE transcription factor binding site (TFBS) annotations in 9 cell 
types (including 8 cancer and one embryonic stem cell lines169; Supplementary Table 5 and 6). 

We compared annotations in the significant set of eQTL with a null distribution based on a 1k 

random samplings of a matched set of genomic intervals. To define the matched sets of 

genomic intervals, we selected flanking genomic intervals from the whole set of tested genes 

that showed a similar distance from the gene start (exact distance ∓2kb) and that matched the 

exact burden frequency of the corresponding interval in the significant associations. We then 

overlapped the 1k matched sets with Roadmap Epigenomics and ENCODE annotations. To 

avoid ambiguous overlaps (with multiple annotations), we only retained genomic intervals 

showing a minimum overlap of 10% of their length.  

We retrieved an empirical P value of enrichment for each annotation by counting the number of 
randomly sampled flanking intervals (N) showing greater number of overlaps compared to the 
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eQTL set (P = (N+1)/(1000+1)). Benjamini-Hochberg correction was applied to the empirical P 
values (over 25 marks in 127 cell lines for Roadmap Epigenomics annotations and over 149 
TFBS for 9 ENCODE cell lines). We then computed the fold change per annotation and cell line 
as ratio of annotated lead flanking intervals and mean number of annotated matched random 
flanking intervals over the 1k samplings.   

Variance Component Analysis 

Limix was used to perform variance decomposition using the same covariates as in the somatic 
variant analyses except for local CN state (see Covariates). The random effects were based on 
the following germline variants and somatic burden (see Somatic calls and mutational burden 
for detailed description of burden): 

● cis somatic intronic: weighted burden in introns  

● cis somatic exonic:  weighted burden in exons  

● cis somatic flanking: weighted burden in 1kb-overlapping regions of 2kb within 1Mb from 
gene boundaries 

● somatic intergenic: weighted burden in 1kb-overlapping regions of 2kb outside the 1Mb 
window 

● cis germline: germline variants within 100kb from gene boundaries 

● trans germline: genome-wide population structure (see Covariates) 

● Local CN variation (see Covariates) 

All the data was mean-centered and standardised. For each of the random effects, a linear 
kernel was computed and used as covariance matrix. The resulting variance components were 
normalized to add up to one.  

Mutational signature associations 

We obtained 39 mutational signatures from PCAWG-7 beta 2 release (PCAWG7, 2017) and 
used linear models to associate the mutational signatures with gene expression of up to 18,898 
protein-coding genes across 1,159 patients while accounting for known covariates (see 
Covariates) (quality control: Extended Data Figure 25a-e). The 1,159 patients were a subset of 
the total 1,188 patients, for which mutational signature profiles were available. Gene expression 
was corrected for 35 hidden peer factors (see Gene expression). 

We retained 18,888 genes that showed a minimum FPKM of 0.1 in at least 1% of 1,159 the 
patients (see Gene expression). Signatures with zero variance and a prevalence below 1% 
were filtered. Like this, we obtained 28 signatures. We applied linear models to associate 
expression of these genes with the signatures across all 1,159 patients, a subset of 877 
carcinoma patients or a subset 891 European patients to assess consistency of the associations 
(Extended Data Figure 25f-g).  
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Across all patients, we found 1,176 significantly associated genes after Benjamini-Hochberg 
correction (we used an FDR ≤ 10% for enrichment analyses, multiple testing was applied across 
all signature-gene pairs, Supplementary Tables 15a-c). We performed gene enrichment 
analyses of the significant genes per signature (see Gene Ontology and Reactome Pathway 
enrichment, here 18,831 background genes, multiple testing correction across all ontologies per 
signature FDR ≤ 10%, Supplementary Table 15d). Whereas most signatures only affected few 
genes, 18 showed recurrent trans effects and affected expression of over 20 genes (Extended 
Data Figure 26d, Supplementary Table 15e). We further found that the vast majority of genes 
(85.8%) were associated with only one signature (1,009 genes); 129 genes were associated 
with two, 32 with three, five with four and one with five signatures.  

To assess how tissue-specific both mutational signatures and their associations with gene 
expression are, we analysed the occurrence of each signature in each of the cancer types. We 
assessed the presence (at least one SNV of a signature in at least one patient with a specific 
cancer type) and mean prevalence (mean number of SNVs of a certain signature across all 
patients of a specific cancer type) of the signatures in the cancer types (Extended Data Figure 
28). We defined cancer type-specific signatures to occur in up to 4 cancer types (signatures 4, 
7, 9, 12, 16, 38 and 39) and common signatures to be missing in up to 5 cancer types 
(signatures 2, 13, 18). For each of these signatures, we performed cancer type-specific 
analyses, i.e., we assessed the association between the respective signature and gene 
expression in just the patients that are of a cancer type that shows mutations of the respective 
signature (Extended Data Figure 28 left heatmap). We then correlated the P values of these 
cancer type-specific analyses with the P values of the analysis across all patients and 
calculated the Pearson correlation coefficients (Extended Data Figure 29a-k). We show that 
the correlation between cancer type-specific and whole-cohort P values is dependent on the 
sample size of the respective analysis (r2=0.671, Extended Data Figure 29i).  

We further performed principal component analysis (PCA) on the signatures across both, 
patients (PCA on signature-specific SNVs per patient) and genes (PCA on adjusted P values of 
signature-gene expression associations) (Extended Data Figure 26a-b).  

To assess significance of the functional annotation of SNVs by mutational signatures, we also 
associated gene expression with the total number of SNVs and correlated the P values (-log10P) 
of the associations with the respective signature-specific P values. The absolute Pearson 
correlation coefficients remain below 0.1 (Supplementary Table 15f). 

To establish causality of signature-gene expression associations, we included the germline 
eQTL into the analysis using linear mixed models; 197 of our 1,176 signature-associated genes 
were also germline eGenes. These 197 associations involved 26 of the 28 mutational 
signatures. We associated the lead variants of these eGenes with the rank-standardised 
signature SNVs across 2,507 patients. We used the subset of the 2,818 WGS patients for which 
mutational signature profiles and all known covariates were available. We accounted for the 
same fixed covariates as in the mutational signature-gene expression association studies and, 
in addition, for kinship as a random effect (see Covariates).  
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We then performed proportional colocalisation analysis with Bayesian Model Averaging (BMA) 
using the R package coloc 170 to test whether gene expression and mutational signatures share 
common causal genetic variants in a given gene region. A proportional colocalisation analysis 
tests the null hypothesis of colocalisation by assuming that two phenotypes that share causal 
variants will have proportional regression coefficients for either phenotype with any variant 
selection in the vicinity of the causal variant. We applied the BMA approach, with each tested 
model consisting of a selection of two variants. The P values are then averaged over all models 
to generate posterior predictive P values170. We filtered variants so that no pair of variants 
showed r2>0.95 and each variant's marginal posterior probability of inclusion with one of the 
phenotypes was greater than 0.01. The nominal P values of rejecting the null hypothesis of 
colocalisation are listed in Supplementary Table 15e. 

We then performed mediation analysis108,109 to assess directionality of the effect between 
germline eQTL, gene expression and mutational signature. First, Causal Mediation Analysis 
was applied to each of the triples of eQTL lead variant, gene and mutational signature using a 
structural equation model from the R package lavaan171. Then, we employed the R package 
mediation172 to assess significance of mediation and estimate the proportion of mediated effect 
by nonparametric bootstrap confidence intervals (1000 simulations).  

Estimation of alternative promoter activity 
We estimated promoter activities using RNA-seq data and Gencode (release 19) annotations for 
70,937 promoter in 20,738 genes. We grouped transcripts with overlapping first exons under the 
assumption that they are regulated by the same promoter 173. We quantified the expression of 
each transcript from the RNA-Seq data using Kallisto 143 and calculated the sum of expression 
of the transcripts initiated at each promoter to obtain an estimate of promoter activity. To obtain 
the relative activity for each promoter, we normalized each promoter’s activity by the overall 
gene’s expression. More details can be found in 174.  

Identification of RNA fusions 
Gene fusions between any two genes were identified based on two different gene fusions 
detection pipelines: FusionMap (version 2015-03-31) pipeline 175 and FusionCatcher (version 
0.99.6a)/STAR-Fusion (version 0.8.0) pipeline 176. The detailed  procedure is described in 177. 
ChimerDB 3.0 was used as a reference of previously reported gene fusions. The database 
contains 32,949 fusion genes splitted into three groups: 
-  KB  : 1,067 fusion genes manually curated based on public resources of fusion 
genes with experimental evidences; 
-  Pub  : 2,770 fusion genes obtained from text mining of PubMed abstracts. 
-  Seq  : archive with 30,001 fusion gene candidates from deep sequencing data. This set 
includes fusions found by re-analysing the RNA-seq data of the TCGA project encompassing 
4,569 patients from 23 cancer types . 
 
Briefly, FusionMap was applied to all unaligned reads from the PCAWG aligned TopHat2 RNA-
seq BAM files for each aliquot to detect gene fusions. In the FusionCatcher/STAR-Fusion 
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pipeline, for each aliquot with paired-end RNA-seq reads FusionCatcher was applied to the raw 
reads, with the genome reference.  To reduce the number of false positive fusions, the two sets 
of fusions were filtered to exclude fusions based on the number of supporting junction reads,  
sequence homology, occurrence in normal samples (from the GTEx and the PCAWG cohort). 
To get a high-confident consensus fusion call set from these two pipelines,  a fusion to be 
included in the final set of fusions had to: i) be detected by both fusion detection tools in at least 
one sample; and/or ii) be detected by one of the methods and have a matched SV in at least 
one sample.  The consensus WGS-based somatic structural variants (version 1.6) were 
obtained from the PCAWG repository in Synapse 
(https://www.synapse.org/#!Synapse:syn7596712). Finally, 3,540 fusion events were included 
as the consensus fusion call set, from these 2,268 were detected by both FusionCatcher/STAR-
Fusion and FusionMap (from these 1821 had SV support) and 1,112 were detected by only one 
method and had SV support. All fusions are available in Synapse 
(https://www.synapse.org/#!Synapse:syn10003873). 

Identification of alternative splicing 
We used the alignments based on the STAR pipeline to collect and quantify alternative splicing 
events with SplAdder178. The software has been run with its default parameters with confidence 
level 3. We generated individual splicing graphs for each RNA-Seq sample for both tumor as 
well as matched normal samples (when available). All graphs were then integrated into a 
merged graph to comprehensively reflect all splice junctions observed in all samples together. 
Based on this combined graph, SplAdder was used to extract alternative splicing events of the 
following types: alternative 3’ splice site, alternative 5’ splice site, cassette exon, intron 
retention, mutually exclusive exons, coordinated exon skip (see Supplemental Figure 3 in 178). 
Each identified event was then quantified in all samples by counting split alignments for each 
splice junction in any previously identified event and the average read coverage of each exonic 
segment involved in the event was determined. We then computed a percent spliced in (PSI) 
value for each event that were then used for further analysis. We further generated different 
subsets of events, filtered at different levels of confidence, where confidence is defined by the 
SplAdder confidence level (generally 2), the number of aligned reads supporting each event, the 
number of samples that were found to support the event by SplAdder, and the number of 
samples that passed the minimum aligned read threshold.  

Identification of RNA editing events 
We used an RNA editing events calling pipeline, which is an improved version of a previously 
published one 179. Firstly, we summarized the base calls of pre-processed aligned RNA-reads to 
the human reference in pileup format. Secondly, the initially identified editing sites were then 
filtered by the following quality-aware steps: (1) The depth of candidate editing site, base 
quality, mapping quality and the frequency of variation were taken into account to do a basic 

filter: the candidate variant sites should be with base-quality ≥ 20, mapping-quality ≥ 50, mapped 

reads ≥ 4, variant-supporting reads ≥3, and mismatch frequencies (variant-supporting-
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reads/mapped-reads) ≥ 0.1 (2) Statistical tests based on the binomial distribution B(n, p) were 
used to distinguish true variants from sequencing errors on every mismatch site 180, where p 
denotes the background mismatch rate of each transcriptome sequencing, and n denotes 
sequencing depth on this site. (3) Discard the sites present in combined DNA SNP datasets 
(dbSNP v.138, 1000 Genome SNP Phase 3, human populations of Dutch181, and BGI in-house 
data. (Combined datasets deposited at: ftp://ftp.genomics.org.cn/pub/icgc-pcawg3) (4) Estimate 
strand bias and filter out variants with strand bias based on two-tailed Fisher’s exact test. (5) 
Estimate and filter out variants with position bias, such as sites only found at the 3’-end or at 5’-
end of a read. (6) Discard the variation site in simple repeat region or homopolymer region or <5 
bp from splicing site. (7) To reduce false positives introduced by misalignment of reads to highly 
similar regions of the reference genome, we performed a realignment filtering. Specifically, we 
extracted variant-supporting reads on candidate variant sites and realign them against a 
combination reference (hg19 genome + Ensembl transcript reference v75) by bwa0.5.9-r16. We 
retain a candidate variant site if at least 90 % of its variant-supporting reads are realigned to this 
site. Finally, all high confident RNA editing sites were annotated by ANNOVAR182. (8) To 
remove the possibility of an RNA editing variant being a somatic variant, the variant sites are 
positionally filtered against PCAWG WGS somatic variant calls. The calls were obtained from 
the PCAWG repository in Synapse (https://www.synapse.org/#!Synapse:syn7364923). (9) The 
final two steps of filtering are designed to enrich the number of functional RNA editing sites. 
Firstly, we only keep events that occur more than two times in at least one cancer type. 
Secondly, we only keep events that occur in exonic regions with a predicted function of either 
missense, nonsense, or stop-loss.   

Gene-Centric table creation 
To perform the outlier recurrence analysis, each alteration type was condensed into a binary 
gene-centric format. Since alterations can occur at many different levels (nucleotide, exonic, 
gene, or transcript), to make them comparable we projected each alteration type onto the gene 
body. We summarised each alteration type by its presence or absence within a single gene, 
yielding a binary value per type for each gene-sample pair. 
The events we included in this analysis were: RNA editing, non-synonymous variants, 
expression, splicing alterations, copy-number alterations, fusions, and alternative promoters. 
Each alteration type was summarised differently due to their inherent differences. 
RNA editing events and non-synonymous variants can occur several times within a single gene 
body, so these events were denoted as 1 if they occurred at least once within a gene-sample 
pair.  
For copy-number, to obtain a single numerical value per gene-sample pair the copy-number 
alteration was averaged over the gene body. Since we do not have matched normal samples 
against which to compare, we instead consider outlying events within each histotype as 
significant. Thus, a value of 1 was given to average copy-number alterations larger than 6 or 
smaller than 1. 
Similarly to non-synonymous variants, multiple splice events can occur within a gene body. The 
event with the most extreme percent-spliced in (PSI) within the gene-body is selected as the 
candidate event for the gene. The candidate’s PSI value for a gene is compared over all 
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samples within a histotype and it is set to 1 (i.e., significant) only if it is in the top or bottom 1% 
within that histotype. We used the same binarization method for expression outliers. 
Alternative promoter outliers were calculated based on relative promoter activity within each 
cancer type. To binarize the promoter activity, a z-score cut-off of two over the relative 
expression distribution within each cancer type was used. 
For allele specific expression outliers, only genes significant allelic imbalance (FDR ≤ 5% and 

allelic imbalance > 0.2, binomial test) were denoted as 1. 
 

Identifying genes with heterogeneous mechanisms of alterations in 
cis 
Genes with multiple heterogeneous mechanisms of RNA alteration were identified from 
associations of cis-variants with gene expression, allele-specific expression, fusions, and 
splicing. For gene expression, genes associated with somatic eQTL with FDR < 5% were 
selected. For allele-specific expression, the top 5% of genes ranked by the predicted 
contribution of somatic variants on ASE.  For fusions, all RNA fusions with structural variant 
support were selected. For splicing, genes having somatic mutations within 10bp of an 
annotated splice site or 3bp of a branchpoint and associated splicing were selected. These 
associated splicing events also had to have a |Z-score| greater than or equal to 3 and the 
difference of percent spliced in the outlier event was greater than or equal to 10%. 

Recurrence analysis 
The recurrence analysis was performed on the binarized gene-centric table for all nine alteration 
types. The recurrence analysis was performed in three main steps: 1) Aggregate within each 
alteration type across all samples. This results in a sum for each gene-alteration pair. 2) Convert 
the counts to ranks within each alteration. The smallest rank goes to the most frequently altered 
genes. Ranks are split evenly across ties. 3) To generate a single score for each gene, the 
second smallest rank across alterations is used as the score. To identify a score cutoff for 
significantly altered genes, a null distribution was generated through permutation. The 
permutations were performed over the samples within each gene-alteration pair, this was done 
over all genes and samples 1000 times, concatenating together all observations, results in 
16.8M permuted scores.  A P value less than 0.05 as derived from the null distribution was 
defined as significant, resulting in a score greater than or equal to 706.5 considered as 
significant. 

Co-occurrence analysis 
 The co-occurrence analysis was also performed on the aforementioned binarized gene-centric 
table, but only including variants, expression outliers, alternative promoters, alternative splicing 
and fusions. SCNA and ASE are excluded due to a large number of anticipated co-occurrence. 
In this analysis, we required at least one gene of a given alteration pair to be a COSMIC gene. 
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For each alteration pair, based on the number of donors with both alterations, one alteration 
only and neither alterations in a set of cancer samples, we performed Fisher’s exact test to 
determine whether the alteration pair was independent of each other. Such tests were followed 
by Benjamini-Hochberg multiple testing correction to obtain the FDR (or q-values). To rule out 
the potential false positive association caused by tissue specific alterations, we performed the 
same analysis for each of the tumor types with at least 50 patients, and only retained those 
alteration pairs which were significantly associated in both the pan-cancer analysis and in at 
least one specific cancer indication. Among the significantly associated alteration pairs, the co-
occurred pairs were those with odds ratio greater than 1. Pathway enrichment and 
visualization96,183 was conducted using the R package ReactomePA184. The circos plots were 
generated using the R package circlize185. The splicing related genes were derived from the 
genes annotated as "REACTOME_MRNA_SPLICING" or 
"REACTOME_MRNA_SPLICING_MINOR_PATHWAY" in the Molecular Signatures Database 
(MSigDB)186. 
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Tables 
 

Table 1: RNA alteration data 
 

RNA data Synapse ID Total number of 
gene alterations 
found 

Mean number of 
gene alterations 
per donor  

Extended RNA-Seq metadata syn7416381 NA NA 

Gene expression (PCAWG) syn3104297 577,470 486 

Gene expression (GTEx) syn8105922 NA NA 

Transcript-level expression 
(PCAWG and GTEx) 

syn5974793 NA NA 

RNA fusions syn3107127 5,900 5 

Alternative promoters syn3354819 246,224 207 

Alternative splicing syn3107126 208,463 175 

Allele-specific expression syn5816006 545,918 460 

RNA editing (with a non-
synonymous change) 

syn7183004 167 <1 

Combined gene-centric table (DNA 
and RNA alterations) 

syn7241153 1,873,105 1,577 

 
The table gives Synapse identifiers to RNA analyses reported in this study. To find a particular 
dataset, the url is:https://www.synapse.org/#!Synapse:<Synapse ID> For example, for gene 
expression data, the full url is: https://www.synapse.org/#!Synapse:syn3104297; NA, not 
applicable 
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Figure Legends 

Figure 1: Pan-cancer expression profiling of 1,188 PCAWG 
donors.  
a. Tumor and normal RNA-Seq data from 27 histotypes. Total number of samples are given to 
the right of bars. grey bars, normal samples. b. Total number of tumor and normal samples from 
the PCAWG study. A subset of tumors (dark violet) were metastatic. c. Number of female 
versus male donors. d. t-SNE analysis of median gene expression aggregated within each 
project and each GTEx tissue.  

Figure 2: Germline and somatic SNVs associated with 
expression.  
a. The Venn diagram shows the number of eQTL identified in the PCAWGcohort and the 
fraction of QTL that replicate in the GTEx cohort. 426 eQTL were specific to the PCAWG cohort. 
b. Manhattan plot for SLAMF9, showing associations of the pan-analysis in the PCAWG cohort 
(blue) and in GTEx (red). c. Variance component analysis for gene expression levels (Methods). 
Shown is the average proportion of variance explained by different germline and somatic factors 
for different sets of genes (grouped based on component that explains the most variance), 
considering genes for which the largest variance component are i) somatic copy number 
alteration (SCNA), ii) somatic variants in flanking regions, iii) cis germline effects and iv) somatic 
intron and exon mutations, respectively. The number of genes in each set is indicated in 
parentheses. d. Breakdown of 567 genomic regions that underlie the observed cis somatic 
eQTL by variant category (Intronic = eGene intron; Exonic = eGene exon; Flank. = 2kb flanking 
region within 1Mb distance to the eGene start; Flank.intergenic = flanking region in a genomic 
location without gene annotations; Flank.intronic = flanking region overlapping an intron of a 
nearby gene; Flank.others = flanking region partially overlapping exonic and intronic annotations 

of a nearby gene). e. Maximum fold enrichment of epigenetic marks from the Roadmap 

Epigenomics Project across 127 cell lines. The number of cell lines with significant enrichments 

is indicated in parentheses (FDR ≤ 10%); asterisks denote significant enrichments in at least 

one cell line.  f. Manhattan plot showing nominal p-values of association for TEKT5 (highlighted 
in gray), considering flanking, intronic and exonic intervals. The leading somatic burden is 
associated with increased TEKT5 expression (P=1.6⋅10-06) and overlaps an upstream bivalent 
promoter (red box; annotated in 81 Roadmap cell lines, including 8 ESC, 9 ES-derived and 5 
iPSC cell lines). The inset boxplot shows a positive association between the mutation status and 
expression levels. g. Distribution of the number of genes with AEI (red) and SCNAs (blue) 
across the cohort. Cancer types with high chromosomal instability also exhibit highest amounts 
of AEI. h. Relative contribution of different types of somatic mutational burden and other co-
variates to the likelihood of observing AEI. Promoter, 5’UTR, splice region and stop gain 
variants contribute most. i. Standardized effect sizes on the presence of AEI, taking only 
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SCNAs, germline eQTLs, coding and non-coding mutations into account. In sum, SCNAs 
accounted for 86.1% of the total effect size, followed by germline eQTL (9.0%) and somatic 
SNVs (4.8%). 

Figure 3. Promoter mutations and their association with 
expression.  
a. Schematic representation of noncoding promoter mutation burden calculation. b. Overview of 
noncoding promoter mutations per sample. c. Overview of the number of mutated promoters per 
tumor type for promoters with at least 3 mutated samples. d. Promoters ranked by the number 
of mutated samples across all cancer types in a 200bp window, *indicates cancer census 
genes. e. Shown is the TERT locus and the number of mutations observed at each position. 
The first promoter shows a highly recurrent non-coding mutation reported previously (Bojesen et 
al., 2013; Rafnar et al., 2009). f. Comparison of promoter activity for mutated and non-mutated 
samples. 
 

Figure 4. Position specific impact of somatic mutations on 
alternative-splicing.  
a. Top panel: Proportion of mutations near exon-intron junctions and at branchsites that impact 
exon skipping events. Impactful mutations are ones in which the percent spliced in (PSI) derived 
z-score is  >= 3 (dark blue). Non-impactful mutations are ones in which the PSI derived z-score 
is <3. Intron positions that are significantly enriched for impactful mutations are denoted by 
asterisks ( *** < 0.001, ** < 0.01, * < 0.05 ). Middle panel: Magnitude and direction of mutation-
associated splicing alterations. Bottom panel: Sequence motifs of regions. b. Example splicing 
impact of a branch point mutation. UCSC genome browser RNA-seq coverage plots of cassette 
exon event in RBM28 between mutant and wild-type. Mutant (bottom track) harbors a A->G 
mutation 29 nucleotides upstream from acceptor site of affected exon. c. Distribution of novel 
cassette exon events only detected within the PCAWG cohort. Top panel shows total number of 
events per histology type. Middle panel contains the same number, normalized to the total 
number of cassette exons detected in the histology types. The bottom panel shows the number 
of exonizations per histotype (novel cassette exons co-located to a somatic alteration near the 
acceptor or donor of the exon). d. Example for exonization event in the tumor suppressor gene 
STK11. RNA-Seq read coverage for a part of the gene is shown in red for a donor carrying the 
alternate allele and in grey for a random donor with reference allele. The cassette exon event is 
shown as schematic below, with blue (red) boxes denoting constitutive (alternative) exons and 
blue solid lines introns. Zoomed in panels on the bottom show details from IGV visualization, 
highlighting a somatic mutation at the 3’ end of the cassette exon. The associated sequencing 
change is illustrated on the lower right corner, where the vertical bar denotes the exon-intron 
boundary. e. Alu-based exonization mechanism. Presence of Alu element in intron in antisense 
alone will still result in normal splicing (top). Specific mutation of Alu sequence creates novel 
splice site and creates exonization (bottom). f. Enrichment of SINE elements in SAVs compared 
to sequence background (left). Drawn separately for SINE elements overlapping in sense 
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(middle) and antisense (right) direction. 

Figure 5: Structural rearrangements associated with RNA 
fusions.  
a. The number of all detected and novel fusions and their overlap with the cancer census genes. 
Majority of the fusions are present only in one sample, however, over half of the recurrent 
fusions are present in several cancer histotypes. From the novel recurrent fusions 19 involve 
cancer census genes and 7 of them are in multiple histotypes. b. Connected clusters of at least 
10 genes. Genes are represented as nodes and the size of a node is proportional to the number 
of gene fusion partners. Two nodes are connected if one fusion was detected involving the two 
genes: an edge is colored blue if the fusion has matched structural rearrangements evidence 
and is colored orange otherwise. Nodes and connections are only shown between promiscuous 
genes . The color intensity indicates if a gene is involved more often in a fusion as 3' (purple) or 
5' (green) gene or both (white). c. Supported rearrangements for composite fusions bring the 
fused segments of two genes significantly closer. Natural distance indicates the native distance 
between two related SV breakpoints. Effective distance indicates the distance between the final 
two breakpoints of the intra-composite/inter-composite fusions. D. Schematic representation of 
examples of different types of SV-supported fusions: i) direct fusions, ii) bridged fusions, iii) 
inter-composite fusions, and iv) intra-composite fusions. Bridged fusions are those composite 
fusions formed by a third genomic segment bridging two different genes. Only one of the 
possible orders of genomic arrangement is depicted in each case, with breakpoints highlighted 
as thunderbolts.  

Figure 6: Global view of DNA and RNA alterations affecting 
tumors.  
a. Barplots showing the median numbers of different alterations across histotypes. Histotypes 
are ordered by hierarchical clustering based on the pattern of different types of alterations. Only 
histotypes with more than 10 patients are shown. b. Composite pie-charts showing the 
percentages of RNA alterations, DNA alterations or both, affecting sets of genes in well-
characterized cancer pathways and known to be functionally altered in cancer. The sizes of 
circles represent the percentages of patients affected based on the given gene set. The 
columns indicate different cancer types. 

Figure 7: Co-occurrence analysis reveals trans-associations.  
a. Manhattan plot for association of gene expression outliers with cancer gene variants. Each 
dot represents an alteration pair. The x axis shows all COSMIC genes ordered alphabetically 
and the y axis represents the FDR-adjusted p values (q values) based on Fisher’s exact tests.  
COSMIC genes with more than 10 significant associations (FDR ≤< 5%) are colored in red and 
their names labeled. b.c.d. Circos diagrams show the selected genes significantly co-occurred 
with B2M (b), DDX23 (c) and SAMD4B (d). Connecting lines indicate the specific types of co-
occurrences of alteration pairs. The inner histograms indicate the frequencies of incidences of 
different alteration types shown in different colors. e. Heatmap showing the co-occurrence 
between the TRRAP expression outliers and the SAMD4B transcriptional alterations. Each 
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column indicates a specific tumor with tumor types annotated to the left.  *** Adjusted P < 0.001 
indicates the significance of the association for the given alteration pairs. Most samples without 
the listed alterations are not shown for space considerations.  

Figure 8: Associations between mutational signatures and gene 
expression.  
a. Summary of significant associations. Top panel: Total number of associated genes per 

signature (FDR ≤ 10%). Bottom panel: Enriched GO categories or Reactome pathways for 

genes associated with each signature (FDR ≤ 10%, significance level encoded in color, -log10 
Padj). b. Representative signature-gene association, depicting a negative association between 
CYP26A1 expression and Signature 4. c. Manhattan plots of associations between cis germline 
variants proximal to APOBEC3B (plus or minus 100kb from the gene boundaries) and Signature 
2 (top panel) or APOBEC3B gene expression level (bottom panel). The gray region denotes the 
gene body, the orange variant the lead eQTL variant rs12628403. 
 

Figure 9: Genes can be altered in cis through multiple 
mechanisms.  
a. Genes with at least one type of RNA alteration that also has an associated change at the 
DNA-level in cis. Genes are either classified as a PCAWG driver gene or not classified as a 
driver gene nor a cancer gene from the cancer gene census. Examples of a known cancer 
gene, b. NF1, and an unclassified gene, c. PTGFRN, having heterogeneous mechanisms of 
alterations.  
 

Figure 10: Significantly mutated genes through DNA and RNA 
alterations.  
a. Full list of 1012 genes that are both frequently and heterogeneously altered across both RNA- 
and DNA-level alterations. Yellow bars to the left indicate the proportion of samples that had 
DNA-level alterations while green bars to the right indicate proportion of RNA-level alterations. 
Middle column is a heatmap corresponding to the -log10(p-value). Asterisks indicate a COSMIC 
Cancer Gene Census gene (CGC) or PCAWG driver genes. b. Same as a, but with only CGC 
or Driver Genes shown. c. An enrichment of cancer genes within our list of significantly 
recurrent genes. d. Distribution of alteration types among all significant genes or just CGC or 
PCAWG driver genes. 
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Extended data figures 

 
Extended Data Figure 1: Unified RNA-Seq analysis to identify RNA-level alterations.  
 
Extended Data Figure 2: Consensus gene expression quantification and upper-quartile 
normalization 
 
Extended Data Figure 3: Comparison of TCGA RSEM and FPKM-UQ quantification 
 
Extended Data Figure 4: Quality control analysis of RNA-Seq data. 
 
Extended Data Figure 5: t-SNE analysis of gene expression with all samples shown 
 
Extended Data Figure 6: Integrative regulatory variant approach 
 
Extended Data Figure 7: Germline eQTL lead variants. 
 
Extended Data Figure 8: Germline eGenes 
 
Extended Data Figure 9: Manhattan plots of GTEx comparison 
Extended Data Figure 10: Cis mutational somatic burden 
 
Extended Data Figure 11: Power of different strategies for estimating somatic mutational 
burden for eQTL analysis 
 
Extended Data Figure 12: Manhattan plots of seven somatic eGenes associated to genic 
lead burden 
 
Extended Data Figure 13: Somatic burden prevalence in the cohort 
 
Extended Data Figure 14: ASE analysis 
 
Extended Data Figure 15: SCNAs as major driver for allelic dysregulation in cancer. 
 
Extended Data Figure 16: Results of a directed joint multivariate model that links 
individual somatic events to the ASE ratio. 
 
Extended Data Figure 17: Somatic allelic imbalance predicts cancer relevant genes 
 
Extended Data Figure 18: Association of promoter activity with promoter mutations 
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across all samples.  
 
Extended Data Figure 19: Alternative splicing and association with somatic mutations 
 
Extended Data Figure 20: Structural rearrangements associated with RNA fusions 
 
Extended Data Figure 21: Correlation of Purity and Alteration Frequencies 
 
Extended Data Figure 22: Correlation of the number of somatic genomic alterations with 
RNA alterations 
 
Extended Data Figure 23: Breakdown of DNA and RNA alterations of cancer genes 
 
Extended Data Figure 24: Trans-associations found by co-occurrence analyses 
 
Extended Data Figure 25: Quality control of the gene expression-mutational signature 
association studies 
 
Extended Data Figure 26: Relationship between mutational signatures and gene 
expression patterns 
 
Extended Data Figure 27: Workflow of gene expression-mutational signature association 
studies with subsequent mediation analysis including germline eQTL of associated 
genes  
 
Extended Data Figure 28: Prevalence of mutational signatures across cancer types  
 
Extended Data Figure 29. Comparison of the analysis of the whole cohort with cancer 
type-specific analyses  
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Figure 5: Structural rearrangements associated with RNA fusions
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Extended'Data'Figure'1'
'

'
'

'
'
Extended'Data'Figure'1'|'Unified'RNA6Seq'analysis'to'identify'RNA6level'alterations.!a.!Workflow!of!
RNA-Seq!alignment!and!quantification!of!gene!expression.'b.!Computational!methods!used!to!detect!additional!
types!of!RNA!alterations!including!RNA!fusions,!alternative!promoters,!alternative!splicing,!allele-specific!
expression,!and!RNA!editing.'c.'To!unify!analysis!of!alterations!across!all!RNA!phenotypes,!a!gene-centric!
binary!table!was!created!for!each!RNA!phenotype!indicating!if!a!sample!had!an!alteration!in!a!given!gene!for!a!
given!sample.!For!quantitative!RNA!phenotypes!(gene!expression,!alternative!promoters,!alternative!
polyadenylation,!alternative!splicing,!and!allele-specific!expression),!for!a!given!gene,!samples!with!extreme!
values,!when!compared!to!the!samples!in!the!same!histotype,!were!considered!altered.!
!
'
'
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Extended'Data'Figure'2'
'
'

'
'
'

'
'
'
Extended'Data'Figure'2'|'Consensus'gene'expression'quantification'and'upper6quartile'normalization.'
a.!Correlation!of!STAR!vs!TopHat2!HTSeq!counts!!for!both!raw!counts!(left)!and!FPKM-UQ!normalized!counts!
(right).!b.!Boxplots!of!raw!(top),!FPKM!(middle)!and!upper-quartile!normalized!FPKM!values!(FPKM-UQ,!
bottom)!for!the!same!random!subset!of!50!samples!taken!from!the!cohort.!
'
'
'
'
'
'
'
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Extended'Data'Figure'3'
'
'
'
'
'
'

'
'
'
'
'
'
Extended'Data'Figure'3'|'Comparison'of'TCGA'RSEM'and'FPKM6UQ'quantification.!For!778!tumor!
expression!profiles!represented!in!both!PCAWG!and!TCGA!datasets,!gene-level!correlations!(Pearson's!using!
log-transformed!values)!between!the!two!datasets!were!computed!(top!scatter!plot).!Genes!represented!in!
both!datasets!are!ranked!from!high!to!low!average!log2!fpkm!values!(PCAWG!dataset).!
'
'
'
'
'
'
'
'
'
'
'

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/183889doi: bioRxiv preprint first posted online Sep. 3, 2017; 

http://dx.doi.org/10.1101/183889


Extended'Data'Figure'4'

'
'

Extended'Data'Figure'4'|'Quality'control'analysis'of'RNA6Seq'data.!a.!Overview!of!QC!measures!collected!
on!the!full!dataset!based!on!output!of!the!FastQC!tool.!Top!bar!encodes!sequencing!center!of!the!library,!
middle!top!bard!encodes!the!study!metadata!as!used!for!tracking,!lower!top!bar!labels!the!project!code!of!a!
library.!b.!Total!read!count!per!library!shown!as!histogram.!Libraries!are!colored!by!project!code.!c.!Total!read!
count!per!library!shown!as!comparative!distributions.!Libraries!are!colored!by!project!code.!d.!Sample!
degradation!scores!(3’->5’!bias)!per!library!shown!as!histogram.!Libraries!are!colored!by!project!code.!e.!
Sample!degradation!scores!(3’->5’!bias)!per!library!shown!as!comparative!distributions.!Libraries!are!colored!
by!project!code.''
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Extended'Data'Figure'5'
'

'
Extended'Data'Figure'5'|'t6SNE'analysis'of'gene'expression.'a)!t-SNE!plot!based!on!gene!expression!from!
samples!from!GTEx!(normal!samples)!and!PCAWG!(normal!and!tumor!samples)!coloured!by!tissue.!
b)!t-SNE!plot!(same!as!in!panel!a)!with!the!PCAWG!samples!coloured!based!on!the!estimated!tumor!purity.!
!
'
'
'
'
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Extended'Data'Figure'6!
!
!

!
!
!

'
'
'
Extended'Data'Figure'6'|'Integrative'regulatory'variant'approach.!Overview!of!the!different!sources!of!
genetic!variation!considered!in!the!analysis.!Germline!variants!(blue)!were!individually!tested!for!association!
with!total!gene!expression!using!standard!eQTL!approaches.!Cis!somatic!variants!were!aggregated!in!burden!
categories!and!tested!for!global!association!with!allele-specific!expression,!as!well!as!total!expression!on!a!
per-gene!level!using!eQTL!analyses.!Trans!effects!were!estimated!by!testing!total!gene!expression!for!
association!with!mutational!and!epigenetic!signatures.!Window!sizes!were!1Mb!for!all!cis!eQTL!analyses!and!
100kb!for!allele-specific!expression.!!
'
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'
'
'
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'
'
'
'
'
'
'
'
'
'
'
'
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Extended'Data'Figure'7!
!

!
'
Extended'Data'Figure'7'|'Germline'eQTL'lead'variants.!A)'QQ!plot!of!p-values!of!germline!eQTL!lead!
variants!in!the!pan-cancer!analysis!(FDR!≤!5%,!blue)!and!p-values!of!the!same!analysis!after!permutation!
(random!permutation!of!patients,!red).!B)!Distribution!of!distance!to!the!respective!transcription!start!site!of!all!
germline!eQTL!lead!variants.''
'
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Extended'Data'Figure'8'
'
!

!
!
'
'
Extended'Data'Figure'8'|'Germline'eGenes.'A)'Number!of!germline!eGenes!(genes!with!at!least!one!
germline!eQTL,!FDR!≤!5%)!per!cancer!type,!sorted!by!sample!size!(in!parenthesis).!B)!'Median!gene!
expression!across!the!ICGC!and!GTEx!cohort!for!411!ICGC-specific!eQTL!(green:!somatic!eGenes,!red:!
cancer!testis!genes).!C)!Manhattan!plot!for!TEKT5,!showing!associations!in!the!ICGC!cohort!(blue)!and!in!
GTEx!(green,!minimum!p-values!across!all!GTEx!tissues).!Two!independent!eQTL!were!identified.!D)!Boxplot!
of!log10FPKM!of!the!ICGC-specific!eQTL!lead!variant!of!TEKT5.!E)!TEKT5!gene!expression!(FPKM)!in!GTEx!
tissues!and!ICGC!cancer!types.!
!
!
!
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Extended'Data'Figure'9!
!
!

!
!
'
'
Extended'Data'Figure'9'|'Mahattan'plot'GTEx'comparison.!Manhattan!plots!showing!associations!of!the!
pan-analysis!in!the!ICGC!cohort!(blue)!and!in!GTEx!(green).'A)!Manhattan!plot!of!SLAMF9!as!an!example!of!
an!pan-analysis!specific!eQTL.!B)!Manhattan!plot!of'SLX1A!as!another!example!of!an!pan-analysis!specific!
eQTL.!
'
'
'
'
'
'
'
'
'
'
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Extended'Data'Figure'10'
'

'
'
'
Extended'Data'Figure'10'|'Cis'mutational'somatic'burden.'A)!Total!somatic!mutational!load!per!cancer!
type.!Median!numbers!of!SNVs!ranges!from!1,139!in!thyroid!adenocarcinoma!to!72,804!in!skin!melanoma.!B)!
Number!of!somatic!SNVs!shared!by!patients.!A!small!fraction!of!86!SNVs!is!shared!by!more!than!1%!of!the!
cohort!(12!patients).!C)!Number!of!mutated!regions!with!somatic!burden!frequency!≥1%!tested!per!gene,!
stratified!according!to!their!genomic!position.!
'
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Extended'Data'Figure'11'
'
'

'
'
'
Extended'Data'Figure'11'|'Power'of'different'strategies'for'estimating'somatic'mutational'burden'for'
eQTL'analysis.'A)!Number!of!significant!somatic!eQTL!(FDR!≤!5%)!identified!with!different!mutational!burden!
estimates!using!all!1,188!patients!and!a!subset!of!899!carcinomas!patients.!B-D)!QQ!plots!of!the!p-values!of!
the!somatic!eQTL!analysis.!Considered!were!mutational!burden!calculated!as!B)!binary!burden!(presence!or!
absence!of!at!least!one!somatic!mutation),!C)!total!SNVs!load!(number!of!somatic!mutations!per!element)!or!
D)!weighted!burden!(sum!of!variant!allele!frequencies!over!the!genomic!region!tested,!Methods).!
'
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Extended'Data'Figure'12'
'

'
'
Extended'Data'Figure'12'|'Manhattan'plots'of'seven'somatic'eGenes'associated'to'genic'lead'
burden.!Altogether,!eleven!genic!somatic!eQTL!were!detected!to!show!significant!gene!expression!
changes!associated!to!somatic!burdens!within!the!gene!boundaries!(intronic!or!exonic).!The!seven!
genes!shown!here!are!known!to!be!important!in!the!pathogenesis!of!specific!cancers.!A)!CDK12.!B)!
PI4KA.4C)!IRF4.!D)!AICDA.!E)!C11orf73.4F)!BCL2.!G)!SGK1.%
'
'
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Extended'Data'Figure'13!
!
!
a'

'
b'

'
Extended'Data'Figure'13'|'Somatic'burden'prevalence'in'the'cohort.'a.Clustering!of!somatic!cis!eQTL!
(FDR!≤!5%)!by!mean!burden!frequency!estimated!in!each!cancer!type.!The!heatmap!shows!the!first!top!50!
associations,!sorted!by!mean!burden!frequency!of!the!lead!element!across!all!cancer!types.!Row!labels!
describe!the!HGCN!names!of!the!eGenes!associated!to!leading!somatic!burden.!Multiple!eGenes!associated!
to!the!same!genomic!interval!are!joined!by!an!underscore.!Row!colors!indicate!the!genomic!region!of!the!
burden!(flanking,!intronic!or!exonic).!Column!colors!distinguish!the!two!main!tumor!types!in!the!cohort,!namely!
carcinomas!and!other!tumors!(lymphomas,!skin!melanoma!and!glial!tumors).!b.!Burden!frequency!versus!
effect!size!for!somatic!associations.!
'
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Extended'Data'Figure'14'
'
'
'
'

'
'
'
'
Extended'Data'Figure'14'|'ASE'analysis.!All!cancer!types!are!ordered!by!average!AEI!frequency.!Number!of!
genes!per!patient!for!which!ASE!could!be!quantified,!stratified!according!to!cancer!type,!resulting!in!between!
588!and!7,728!genes!per!patient.!
'
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Extended'Data'Figure'15'
'

'
'

A

B

genomic position
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Extended'Data'Figure'15'|'SCNAs'as'major'driver'for'allelic'dysregulation'in'cancer.!A)!Absolute!allelic!
expression!imbalance!closely!follows!allelic!imbalance!on!the!genomic!level.!Values!of!0.5!(blue)!denote!equal!
number!of!reads!from!both!alleles.!Values!of!1!(yellow)!reflect!monoallelic!expression!or!regions!with!loss!of!
heterozygosity.!B)!Comparison!between!B-allele!frequency!(BAF)!and!ASE!ratios!from!a!single!lung!cancer!
patient!(LUAD-US)!with!profound!chromosomal!instability!shows!strong!correlation!between!allelic!imbalance!
on!expression!and!genomic!levels.!
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Extended'Data'Figure'16''
'

!
'
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Extended'Data'Figure'16'|'Results'of'a'directed'joint'multivariate'model'that'links'individual'somatic'
events'to'the'ASE'ratio.!A)!Relevance!of!individual!somatic!mutation!types!(‘copy-number!ht1’!and!‘copy-
number!ht2’!as!local!allele-specific!SCNAs!of!haplotypes!1!and!2),!germline!eQTL!and!other!co-variates!for!
ASE!ratio.!Significant!covariates!(FDR!≤!5%)!highlighted!in!bold.!B)!Comparison!of!the!effect!of!protein!
truncating!variants!(‘stop-gained’)!and!synonymous!variants!on!ASE!ratio.!C6D)!Examples!of!ASE!ratio!
dysregulation.!!
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Extended'Data'Figure'17''
'
'
'
'

'
'
'
'
'
'
Extended'Data'Figure'17'|'Somatic'allelic'imbalance'predicts'cancer'relevant'genes!
!
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Extended'Data'Figure'18!
!
!
!

!
!

Extended'Data'Figure'18'|'Association'of'promoter'activity'with'promoter'mutations'across'all'
samples.'The!orange!colour!denotes!the!significant!associations.!!
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Extended'Data'Figure'19'
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Extended'Data'Figure'19'|'Alternative'splicing'and'association'with'somatic'mutations.''a)!Number!of!
exon!skipping!events!confirmed!at!different!delta!PSI!thresholds!in!tumor!(red),!normal!(green)!and!GTEx!
(blue)!samples!for!Liver!tissue.!Dashed!lines!show!the!subset!of!exon!skippings!that!only!contain!annotated!
introns.!!b)'Number!of!exon!skipping!events!confirmed!at!a!delta!PSI!level!greater!than!0.3!for!the!individual!
histotypes.!Transparent!section!of!bars!represents!fraction!of!novel!events,!containing!at!least!one!un-
annotated!intron.!!c)!Splicing!landscape!for!exon!skipping!events.!t-SNE!embedding!based!on!exon!skip!PSI!
values!for!all!ICGC!tumor!and!normal!samples!together!with!tissue!matched!GTEx!samples.!d)!Permutation-
based!FDR!values!for!SAV!detection!based!on!the!different!cancer!types.'e)!Cancer!gene!set!enrichment!for!
SAV!sets,!shown!for!cancer!census!gene!set!(middle)!and!sets!determined!by!Lawrence!et!al.!(left)!and!Ye!et!
al.!(right).!!!f)!Positional!distributions!(logarithms!of!distance!from!the!nearest!exons)!of!somatic!variant!creating!
novel!splicing!donors!and!acceptors.''g)'Sequence!motif!logos!around!somatic!mutation!creating!novel!splicing!
motifs.!!h)'SAVs!aligned!to!overlapping!ALUs!aligned!to!the!ALU!reference,!showing!exonizations!creating!a!
novel!acceptor!(red),!a!novel!donor!(green)!or!both!(blue).!! 
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Extended'Data'Figure'20!

!
'

'

Extended Data Figure 20 : Structural rearrangements associated with 
RNA fusions (fusion_assoc)

db

c

a

eTwo sided Wilcoxon rank sum test
(P= 0.1239)
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Extended'Data'Figure'20'|'Structural'rearrangements'associated'with'RNA'fusions' 
A).Features!of!the!27!most!recurrent!in-frame!or!ORF-retaining!fusions.!Kinase!column!indicates!whether!one!
of!the!gene!partners!is!a!kinase!gene!B).CTBP2@CTNNB1!as!an!example!of!“Retained!ORF”!fusion.!A!scatter!
plot!of!CTNNB1!DNA!copy!number!versus!mRNA!expression!across!all!ICGC!gastric!cancer!samples!
C).Fusion!genes!with!promiscuous!gene!partners!overlapped!with!human!common!fragile!sites!do!not!show!
different!number!of!gene!partners.!D).Number!of!gene!fusions!per!sample!and!respective!number!of!fusions,!
structural!variants!(SV),!copy!number!alterations!(CNA),!and!single!nucleotide!variants!(SNV).!The!diagonal!
histograms!shows!the!distribution!of!the!number!of!alterations!per!sample.!The!upper!triangle!presents!the!
Spearman!correlation!between!two!types!of!alterations!per!histological!type!(dot)!and!together!with!the!overall!
spearman!correlation!(in!blue).!The!bottom!triangle!contains!scatter!plots!contrasting!the!number!of!alterations!
for!each!sample!(dot)!E).Systematic!classification!scheme!of!all!gene!fusions!based!on!underlying!SVs.!
Numbers!of!fusion!events!of!different!classes!are!shown!to!the!right.!F).!The!distribution!of!distances!of!fusion!
breakpoints!among!intrachromosomal!composite,!direct!SV-support!and!SV-independent!fusions 
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Extended'Data'Figure'21'
'
'
'
'

'
'
'
'
Extended'Data'Figure'21'|'Correlation'of'Purity'and'Alteration'Frequencies' 
When!estimating!the!relationship!between!purity!and!frequency!of!outliers,!and!using!histotype!as!a!
confounding!variable,!we!find!that!there!is!no!significant!correlation!(t-test!P=0.36). 
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Extended'Data'Figure'22'
'

'
'
Extended'Data'Figure'22'|'Correlation'of'the'number'of'somatic'genomic'alterations'with'RNA'
alterations.'Shown!here!are!scatter!plots!of!DNA!alterations!versus!RNA!alterations,!each!row!is!a!DNA!
alteration!in!the!following!order:!structural!variants,!copy-number!aberrations,!and!non-synonymous!variants.!
Each!row!is!a!RNA!alteration!in!the!following!order:!alternative!polyadenylation,!expression!outliers,!rna-
editing,!allele!specific!expression,!fusions,!and!splicing.!Each!point!is!a!sample!colored!by!histotype,!and!its!
position!is!the!log(number!of!aberrations)!found!in!each!sample.'
!
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Extended'Data'Figure'23!

!
!

Extended'Data'Figure'23'|'Breakdown'of'DNA'and'RNA'alterations'of'cancer'genes.'A.!Composite!pie!
charts!showing!percentages!of!DNA!and!RNA!alterations!for!top!cancer!driver!genes.!The!20!most!significant!
cancer!driver!genes!identified!by!PCAWG!group!in!pan-cancer!level!are!depicted,!with!sizes!of!pie!charts!
indicating!the!percentages!of!patients!carrying!alterations!in!the!given!driver!gene.!The!areas!represent!the!
relative!percentages!of!patients!exhibiting!different!alterations!depicted!by!corresponding!colors.!When!multiple!
types!of!alterations!in!one!pathway!affect!the!same!patient,!only!a!fraction!is!counted!towards!each!type!of!the!
alterations.!B.'Proportional!bar!plots!showing!the!distribution!of!gene!alterations!for!genes!in!the!TGF-Beta,!
apoptosis!and!FGFR!pathways.!C.!Pie!chart!showing!the!breakdown!of!alteration!types!impacting!TP53.! 
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Extended'Data'Figure'24'|'Trans6associations'found'by'co6occurrence'analyses.!A.'Heatmap!
showing!the!known!co-occurrence!between!mutations!of!KRAS!and!PIK3CA,!and!those!between!LATS2!and!NF2.!
Each!column!indicates!a!specific!tumor!with!tumor!types!annotated!to!the!left.!!Most!samples!without!the!listed!
alterations!are!not!shown!for!space!considerations.!B.!Heatmap!showing!the!extent!of!associations!between!
COSMIC!gene!somatic!mutations!and!expression!outliers!of!all!genes.!Each!column!indicates!one!gene,!and!
the!color!intensity!shows!the!significance!of!trans-association.!COSMIC!genes!labeled!to!the!right!are!ordered!
by!the!number!of!significant!associations.!Only!the!top!20!genes!are!shown.!C.!Enrichment!map!showing!the!
significant!(FDR!≤!0.01)!pathways!based!on!the!top!100!significant!genes!associated!with!B2M!alterations.!
Color!intensity!represents!enrichment!significance,!node!sizes!the!number!of!analysed!genes!belonging!to!the!
given!pathway,!and!edge!sizes!the!degree!of!overlap!between!two!gene-sets.!D.!Boxplots!showing!the!total!
number!of!non-synonymous!mutations!acquired!for!patients!with!B2M!alterations!versus!those!without.!E.!
Heatmap!showing!the!extent!of!associations!between!alterations!of!known!splicing-related!genes!and!the!
alternative!splicing!of!COSMIC!genes.!Each!column!indicates!one!COSMIC!gene,!and!the!color!intensity!
shows!the!significance!of!trans-association.!Splicing!related!genes!labeled!to!the!right!are!ordered!by!the!
number!of!significant!associations.! 
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Extended'Data'Figure'25'|'Quality'control'of'the'gene'expression6mutational'signature'association'
studies.'A6C)'QQ!plots!of!the!p-values!of!the!linear!model!associating!expression!of!18,831!genes!with!28!
signatures!across!A)!all!1,159!patients,!B)!877!carcinoma!patients,!or!C)!891!European!patients.!D)!Number!of!
significant!associations!(log10)!at!different!FDR!thresholds!(across!all,!carcinoma!and!European!patients).!E)!
Volcano!plot!of!directionality!of!effects!in!the!analysis!of!all!patients.!F6G)!Comparison!of!analyses!between!all!
patients!and!F)!carcinoma,!G)!European!patients,!respectively.!The!-log10P!per!signature-gene!pair!are!
correlated!(r=.763!and!r=.789,!Pearson!correlation!coefficient),!especially!above!an!FDR!threshold!of!10%.!!
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Extended'Data'Figure'26'

!
Extended'Data'Figure'26'|'Relationship'between'mutational'signatures'and'gene'expression'patterns.!
A6B)!PCA!of!A)!signatures!across!1,159!patients!(PCA!on!signature-specific!SNVs!per!patient)!and!of!B)!
signature-gene!expression!associations!across!18,831!genes!(PCA!on!adjusted!p-values!of!signature-gene!
expression!associations).!The!PCA!on!the!SNVs!recapitulates!known!interdependencies,!e.g.!between!
Signatures!7,!whereas!the!PCA!on!the!signature-gene!association!studies!additionally!emphasizes!functional!
relatedness,!e.g.!between!Signatures!2!and!13.!C)!Hierarchical!clustering!of!signatures.!The!numbers!at!the!
nodes!indicate!the!number!of!genes!commonly!associated!with!two!to!four!respective!signatures.!The!
dendrogram!shows!that!genes!are!associated!with!more!than!one!signature!mostly!due!to!similar!SNV!patterns!
of!these!signatures!across!patients.!D)'Frequency!of!number!of!significantly!associated!genes!per!signature!
(FDR!≤!10%).!While!many!signatures!are!significantly!associated!with!a!few!genes,!18!signatures!are!
associated!with!more!than!20!genes.!Signature!9!is!associated!with!more!than!350!genes.!Vice!versa,!1009!
genes!are!associated!with!only!one!signature,!129!with!two,!32!with!three,!5!with!four!and!1!with!five!
signatures.!
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Extended'Data'Figure'27'
'
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'

'
'

'
'
Extended'Data'Figure'27'|'Workflow'of'gene'expression6mutational'signature'association'studies'with'
subsequent'mediation'analysis'including'germline'eQTL'of'associated'genes.'Genes!involved!in!
significant!mutational!signatures!and!gene!expression!associations!are!queried!for!germline!eQTL.!If!the!
germline!eQTL!lead!variant!is!significantly!associated!with!the!mutational!signature,!mediation!analysis!is!
applied!to!each!potential!triple!of!germline!eQTL!lead!variant,!gene!expression!and!associated!mutational!
signature.!Here,!the!mediating!effect!of!the!mutational!signature!is!assessed!by!comparing!the!indirect!(ind)!
and!total!effect!of!the!germline!variant!onto!gene!expression!(the!same!analysis!has!been!conducted!for!gene!
expression!as!mediator).!a,!b!and!c!denote!the!effect!sizes!of!the!individual!associations.!The!boxes!on!the!
right!show!the!numbers!of!genes!and!eQTL!for!the!APOBEC3B!case.!!
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Extended'Data'Figure'28'
!
!
!
!

'
'
Extended'Data'Figure'28'|'Prevalence'of'mutational'signatures'across'cancer'types.!The!left!heatmap!
shows!the!presence!of!each!signature!in!a!specific!cancer!type!(at!least!one!mutation!of!the!respective!
signature!occurs!in!at!least!one!patient!with!the!specific!cancer!type).!Signatures!1!and!5!occur!in!all!cancer!
types,!signatures!2,!13!and!18!are!common!signatures!and!signatures!4,!7,!12,!16,!38!and!39!occur!in!specific!
cancer!types.!The!right!heatmap!shows!the!prevalence!of!each!signature,!i.e.!the!mean!signature!count!
(log10(count!+!1))!across!all!patients!of!one!cancer!type.!!
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Extended'Data'Figure'29'

!
'
Extended'Data'Figure'29'|'Comparison'of'the'analysis'of'the'whole'cohort'with'cancer'type6specific'
analyses.'A-K)!The!p-values!(-log10P)!of!cancer!type-specific!analyses!are!compared!against!the!p-values!of!
the!analysis!applied!to!the!whole!cohort!and!the!Pearson!correlation!coefficient!(r2)!is!calculated.!Per!signature,!
all!cancer!types!are!taken!into!account!that!show!presence!of!the!specific!signature!(see!Fig.!S16).!The!
presented!signatures!are!A-H)!cancer!type-specific!signatures!that!occur!in!up!to!4!cancer!types!and!I-K)!
common!signatures!that!are!not!present!in!up!to!5!cancer!types.!L)!Correlations!between!cancer!type-specific!
and!whole-cohort!p-values!(r2)!are!plotted!over!the!sample!size!of!the!respective!cancer!types.!!
!
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