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ENOME EDITING IS A SET OF METHODS USED TO CHANGE THE DNA OF A

cell with single base-pair precision. It is a specific form of gene therapy,

and the engineering of cells through genome editing has the potential to
create a new class of medicines for the treatment of both genetic and nongenetic
diseases. Genome editing has entered clinical trials: applications include the cor-
rection of variants that cause monogenic diseases, the enhancement of chimeric
antigen receptor (CAR) T-cell therapy, and cell-based regenerative medicine. Here
I describe the development of genome editing and discuss the ways in which ef-
ficacy, specificity, delivery, and safety are integral to this process (see interactive
graphic, available at NEJM.org).

EARLY DEVELOPMENT OF GENOME EDITING

Until 1994, the efficiency of genome editing in a mammalian cell was 107° (1 cell
in 1 million would have the desired gene-targeting event).! In 1994, Jasin and col-
leagues discovered that the creation of a break in a DNA double strand in a target
gene could stimulate gene targeting by a factor of more than 1000 in somatic cells
when a “donor” template strand of DNA was provided at the same time that the
break was created.”> With optimization, this system could be used to correct a
reporter gene in up to 5% of cells.* (A reporter gene delivers a signal on successful
DNA editing.) In addition to showing that new sequences could be inserted at the
site of the break through homologous recombination, this discovery also indicated
that new mutations could be created at the site of the break through a process
called nonhomologous end-joining (NHEJ).®® The discovery that a specific double-
strand break in DNA could induce repair is the foundational principle of the field
of genome editing. (See Fig. 1 for a timeline of discoveries.)

A limitation of these early studies was their use of a specific homing endonucle-
ase, an enzyme that recognizes and cuts a specific DNA sequence (a recognition
site). This approach could not be applied to human cells because the recognition
site does not occur in endogenous genes. The problem was solved by engineering
nucleases that recognize target sites in endogenous genes and stimulate genome
editing at those sites.*’?® The first such nucleases were zinc-finger nucleases, in
which a DNA-binding protein with a specific recognition sequence was fused to a
nonspecific nuclease domain." A wide variety of nucleases are now used in addi-
tion to zinc-finger nucleases, including homing endonucleases and transcription
activator-like effector nucleases (Fig. 2).”'?> Each creates a site-specific, double-
strand break in the genome of the cell that activates repair through NHE]J or ho-
mology-directed repair (HDR). Nonnuclease-based systems of genome editing!31¢
are in earlier stages of development.
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Figure 1. Timeline of Developments in Genome Editing.

AAV denotes adeno-associated virus, CAR chimeric antigen receptor, Cas9 a clustered regularly interspaced short palindromic repeats
(CRISPR)-associated protein, CCR chemokine coreceptor, gRNA guide RNA, HE homing endonuclease, TAL transcription activator—like,
TALEN transcription activator—like effector nuclease, and ZFN zinc-finger nuclease.

CRISPR—CAS9 NUCLEASE

The nuclease platform known as CRISPR-Cas9
(clustered regularly interspaced short palindromic
repeats associated with Cas9 endonuclease) was
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developed from a bacterial adaptive immune
system.”? However, because the only two com-
ponents of the bacterial system used in genome
editing are the Cas9 nuclease and the guide RNA
(gRNA), the method is more accurately described
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Figure 2. Nuclease Platforms for Genome Editing.

Four major nuclease platforms are used in genome editing: homing endonucleases—meganucleases (Panel A), zinc-finger nucleases (ZFNs)
(Panel B), transcription activator—like effector nucleases (TALENs) (Panel C), and the Cas9—gRNA nucleases (Panel D). Shown are the
basic structures and key characteristics of each platform in terms of length of recognition site and the action of the nuclease — that is,
whether it acts as a dimer or monomer when cutting a DNA strand. The meganuclease, ZFN, and TALEN platforms all derive specificity
through protein—DNA binding, whereas the Cas9—gRNA platform derives specificity through Watson—Crick RNA-DNA base pairing.

as the Cas9—gRNA system. In genome editing,
the Cas9 nuclease cleaves DNA after an induced
conformational change subsequent to the bind-
ing of gRNA to the DNA target site.

The most commonly used Cas9 enzyme is
from Streptococcus pyogenes. The gRNA molecule
can be tailored to optimize hybridization with a

editing nuclease systems, the “guidance” of
Cas9—gRNA to its target site is governed by
Watson—Crick base-pairing, an ease-of-design
feature.

DNA EDITING THROUGH NHE]

particular DNA target site and thereby guide the
Cas9—gRNA complex to the site of the desired
break (Fig. 2)."* In contrast with other genome-
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NHE]J is a form of double-stranded break repair
that does not require a “repair” template.?!??
Instead, the ends of the broken DNA are held in
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close proximity, processed, and then joined.
NHEJ-mediated editing is normally used in all
cells to repair spontaneous breaks. It is gener-
ally accurate (at a rate of at >70%)>>* but can
create errors. NHEJ is the process naturally used
by cells of the immune system to create genetic
diversity in genes encoding immunoglobulins
and T-cell receptors (TCRs).

In the process of ligating the two ends to-
gether, the NHE] machinery may create a small
insertion or deletion (an “indel”) at the site of
the break. Extraneous pieces of DNA in the
vicinity of the break can be inserted, a phe-
nomenon that is exploited in certain forms of
genome editing.>>* It is possible to engineer
the integration of a DNA cassette directly into
the break through ligation of each end of the
DNA fragment to either side of the break, but
the frequency of targeted integration with the
use of this strategy is low.””? If two simultane-
ous breaks are created and the breaks are in
close proximity on the same chromosome, high
frequencies of defined deletions will result.
Translocations (which may be pathogenic) are
created if the breaks are on different chromo-
somes (which occurs at a rate of 0.2 to 0.4% in
primary human hematopoietic stem and pro-
genitor cells [HSPCs] and of 2 to 4% in primary
human T cells).?*3*3! NHEJ-mediated genome
editing has been used in a variety of strate-
gies with potential for therapeutic application
(Fig. 3A).

DNA EDITING THROUGH HDR

There are two mechanistically distinct types of
HDR.723233 Tn HDR, a donor DNA template is
introduced into the cell, allowing the cell to re-
pair a break with the donor DNA used as a tem-
plate. A classic gene-targeting donor template
has homology arms (each exceeding 400 bases)
that flank the genetic change. In homologous
recombination, the cell uses its molecular re-
combination machinery to synthesize new DNA
that is complementary to the template, and the
new DNA is then used to fix the break through
recombination. This form of genome editing is
used naturally in processes such as meiotic re-
combination. Edits of various sizes can be made,
from single-nucleotide changes to the insertion
of large, multigene cassettes (Fig. 3B). Donor
templates can be delivered through a variety of

Figure 3 (facing page). Genome Editing through
Nonhomologous, End-Joining (NHEJ) Homology-
Directed Repair.

Panel A shows genome-editing through NHEJ. Genome
editing can use the NHEJ mechanism of DNA double-
strand break repair in several ways. Depicted are three
major approaches to NHEJ-mediated genome editing
and examples of how each approach is being developed
to treat specific diseases. Indel refers to a nontemplated
creation of small insertions or deletions at the site of the
break. Panel B shows genome editing through homology-
directed repair. In genome editing, either homologous
recombination or single-stranded template repair can
be used to create nucleotide-specific changes in the
genome. Shown are schematic representations of differ-
ent applications of both approaches to creating changes
in the genome that have single-nucleotide precision. ALB
denotes the gene encoding albumin, HSC hematopoetic
stem cell, HIV human immunodeficiency virus, indel
insertion or deletion, and SCIDX1 X-linked severe com-
bined immunodeficiency.

means, including viral vectors and naked DNA
molecules.

Fig. 3B shows some of the different approaches
to HDR genome editing that are being applied to
the treatment of human disease. These include
the direct reversion of a disease-causing variant
in a gene3¢; the insertion of a complementary
DNA (cDNA) cassette containing a specific gene
into the endogenous locus of that gene such that
it is regulated by its own natural regulatory ele-
ments®38; the insertion of a cDNA cassette into
a different locus such that it will be expressed
according to the regulatory elements of the gene
at that locus®; and the insertion of a transgene
cassette into a “safe harbor” to avoid creating
unintended insertional mutations caused by semi-
random integration with viral vectors (particu-
larly integrations with highly expressed genes)
and to achieve more homogeneous expression of
the transgene.*’

THE IMPORTANCE OF DELIVERY

To achieve highly efficient editing, sufficient
quantities of a highly active nuclease with good
specificity must be delivered into the nucleus of
a cell without activating a toxic cellular response.
In cancer-cell lines, sufficient nuclease expres-
sion can often be generated by transfecting
cDNA (encoding the nuclease) into the cells. In
primary human cells, however, which have an
intact antiviral, cytoplasmic DNA-sensing mech-
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anism, the nuclease must be delivered as a mes-
senger RNA (mRNA) molecule (which the cell
then translates) or as a ribonucleoprotein com-
plex, such as for Cas9—gRNA.?** Electroporation
is an effective and relatively nontoxic method of
delivering these molecules ex vivo.

There are other aspects of delivery to consider.
For example, although mRNA is better than plas-
mid DNA in delivering the nuclease to primary
human cells, mRNA can induce an antiviral
type I interferon response.” Moreover, prolonged
expression of a nuclease or expression of a nu-
clease with low specificity can result in sus-
tained activation of the p53 pathway, thereby
triggering cell-cycle arrest and apoptosis.®

High frequencies of HDR-mediated editing
can be achieved by delivering sufficient amounts
of template DNA to cells without activating a
toxic cellular response (e.g., the type I interferon
response). Recombinant adeno-associated viral
vectors, which have evolved to avoid cellular de-
tection while delivering single-stranded DNA
cargos to the nucleus, are efficient in delivering
classic gene-targeting donor templates to cells.***

Some approaches that enhance HDR-mediated
editing in cells involve the use of small mole-
cules to target specific pathways, but the effects
of such interventions have been modest and in-
consistent; the greatest effects have been realized
when the efficiency has not been optimized.**>!
Moreover, caution is warranted: some of these
interventions perturb the ways in which a cell
normally repairs or responds to a double-strand
break and may therefore compromise the repair
of the 20 to 40 double-strand breaks that occur
spontaneously in every cell as it progresses
through its cycle.

EX VIVO GENOME EDITING
TO GENERATE CELLS AS DRUGS

Of all the approaches to genome editing, the most
developed is ex vivo genome editing, in which
cells are engineered outside of the body and then
returned to the patient. Indeed, ex vivo engineer-
ing of cells with viral vectors (in standard gene
therapy) provides commercially available products
that are being used to treat a genetic immuno-
deficiency and cancer.

Ex vivo NHEJ-mediated genome editing has
been tested in clinical trials (Fig. 1 and Table 1),

including the treatment of persons infected with
the human immunodeficiency virus (HIV). T cells
from these patients were obtained, edited (to
knock out CCRS, which encodes a coreceptor for
HIV), and then reinfused in the patients. This
approach was found to be safe and was associ-
ated with a reduction — albeit a modest one —
in the rate of increase of HIV-infected T cells.”

In addition, genome editing has been used to
make CAR T cells “universal” through the simul-
taneous disruption of the genes encoding TCR«
and CD52, conferring resistance to alemtuzumab,
the drug used for lymphodepletion.*® These CAR
T cells are being tested in the treatment of resis-
tant leukemia. Two patients treated on an emer-
gency basis were reported to have remission
within 28 days, although graft-versus-host dis-
ease developed as a result of residual TCR-posi-
tive cells.®

These trials use zinc-finger nuclease and tran-
scription activator-like effector nuclease platforms
(Fig. 2). Within the next several years, however,
multiple clinical trials involving ex vivo modifi-
cation of HSCs and T cells that use the Cas9-
gRNA system will be initiated in the United
States and Europe. The trials include the use of
NHEJ-mediated knockout strategies to generate
more potent CAR T cells to treat cancer.”® They
also include the knockout of the erythroid-spe-
cific enhancer of BCL11A to up-regulate gamma
globin within the erythroid lineage of autolo-
gous HSCs* as a potential therapy for both
sickle cell disease and B-thalassemia.

Human HDR-based genome-editing strategies
are also likely to enter clinical trials in the next
year. These include direct correction of the variant
that causes sickle cell disease in patient-derived
HSCs and the generation of more potent CAR
T cells.?*® Preclinical studies augur well for ex
vivo, autologous, cell-based therapies involving
genome editing for diseases such as chronic
granulomatous disease,***® X-linked severe com-
bined immunodeficiency,” X-linked hyper-IgM
syndrome,*® and HIV infection.**¢

The overall efficiencies of genome editing of
cells ex vivo are remarkably high. It is now rou-
tine to generate NHEJ-mediated indels with ef-
ficiencies exceeding 80%, large deletions with
efficiencies exceeding 50%, and changes effect-
ed through HDR at frequencies between 30%
and 70% in HSCs and primary human T cells.
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GENOME EDITING TO MODIFY
CELLS IN SITU

There are many diseases for which ex vivo edit-
ing of cells would not provide a clinical benefit.
The fact that there is no reliable method for
transplanting cells into the liver or brain, for
example, represents an obvious barrier. In vivo
editing, whereby cells are edited in their natural
setting (by delivering the editing apparatus into
patients), is a possible solution, and this tech-
nique has been applied (with the use of both
NHEJ- and HDR-mediated approaches) in pre-
clinical models. Examples include the insertion
of a cassette containing a therapeutic protein
into a noncoding region of the gene encoding
albumin,*? the creation of indels in PCSK9 in
liver cells to reduce cholesterol levels,* the re-
moval of a disease-causing exon in DMD to con-
vert severe Duchenne’s muscular dystrophy into
the milder Becker’s muscular dystrophy,®*** and
the correction of disease-causing variants in
mouse models of metabolic diseases.®

The human immune system (adaptive and in-
nate) has proved to be a consistent barrier to the
successful use of genetic engineering in vivo.
Transgene immunogenicity is a challenge to
standard in vivo gene therapy and to genome-
editing strategies. In the context of genome edit-
ing, the immune system may also be a barrier to
the editing machinery itself. All the major nucle-
ase platforms contain foreign proteins. Prolonged
expression of the nuclease is therefore likely to
invoke an adaptive immune response, which
could eliminate the nuclease-expressing cell,
resulting in a lack of efficacy and the generation
of toxic effects. In addition, the first dose may
vaccinate the patient against subsequent doses.®
The Cas9 nuclease used in the Cas9—gRNA sys-
tem is from one of two bacterial species, S. pyo-
genes and Staphylococcus aureus. Since each univer-
sally infects humans, a large proportion of adults
has preexisting immunity to Cas9.5%

SAFETY OF GENOME EDITING

Nuclease-mediated genome editing initiates
double-strand breaks, a source of genomic in-
stability that might lead to cancer-causing muta-
tions. Consequently, considerable effort has been
focused on understanding and minimizing

(through engineering) the creation of off-target
double-strand breaks.

Decreasing the duration of nuclease expres-
sion — for example, by delivering Cas9—gRNA
as a ribonucleoprotein complex — can result in
exponential improvements in specificity.” This
strategy is effective because genome editing is a
“hit-and-run” process that does not require sus-
tained nuclease expression. Changing the bind-
ing and catalytic activity of the nuclease can
similarly result in improved specificity.”12%7
Changing one component, however, can limit
the flexibility in changing another. For example,
some Cas9 variants with higher specificity had
suboptimal target activity when delivered as a
ribonucleoprotein complex.®® A relatively new
Cas9 high-fidelity variant, when delivered as a
complex with gRNA, combines high on-target
activity with improved specificity.”>

A challenge in assessing the safety of genome
editing is that there are no validated preclinical
assays for this new type of medicine. There are
different approaches (e.g., bioinformatic, cell
capture, and in vitro) that can be used to iden-
tify sites that may harbor off-target indels, but
no one approach has been established as the
most effective, and each has its own intrinsic
biases.!>%

Although off-target indels can be detected to
a certain level of sensitivity, there are no data to
provide guidance as to what is a safe level of off-
target indels for either ex vivo or in vivo uses of
genome editing. It is likely that any engineered
nuclease modifying a large population of cells
will facilitate translocations between the on-
target break and spontaneous, random breaks
that continuously arise elsewhere in the genome.
Current assays are not sensitive enough to mea-
sure the frequency of such events, and they have
not been designed to measure the functional
consequences of such events. The wisdom of
growing a large population of cells from a single
clone is uncertain, given that the population
could become dominated by a cell with a spon-
taneous mutation in a tumor-suppressor gene or
by an oncogene that is selected for expression
during the expansion process. Further compli-
cating the assessment of specificity is the fact
that every person has a different genome, with
millions of small differences at baseline, which
makes it challenging to evaluate the conse-
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quence of any small potential change made by a
nuclease.

The use of animal models to predict the safety
of genetic engineering has not been an effective
means of predicting safety in clinical trials. Al-
though genetically engineered cells have been
transplanted into immunodeficient mice to as-
certain safety,” this method cannot be relied on
to identify safe or toxic genetic-engineering strat-
egies. Developing animal models is useful, but
only if they are time- and cost-efficient and can
be shown to reliably predict the results in human
clinical trials. Currently, the best approach to
evaluating safety is in carefully controlled phase 1
human clinical trials, which not only incorporate
standard measures for adjudicating adverse events
but also build in analytic studies for the purpose
of assessing specific toxic effects associated with
genome editing, including clonality and the de-
velopment of toxic immune responses.

APPLICATIONS TO THE TREATMENT
OF HUMANS

MONOGENIC DISEASES

For organ systems such as the hematopoietic and
immune systems, the high frequency of gene
correction achieved across a range of gene targets
for diseases such as sickle cell disease, X-linked
severe combined immunodeficiency, and X-linked
chronic granulomatous disease is above the ther-
apeutic threshold that is predicted to be curative.
These systems will become the subject of clinical
trials in the next several years. Hundreds of ge-
netic diseases of the hematopoietic and immune
system could, in principle, be cured with the use
of this platform. Although monogenic diseases
of other organ systems can also be genetically
“fixed” through genome editing, challenges re-
main, including the isolation, expansion, and
transplantation of tissue-specific stem cells (for
ex vivo therapy) and the delivery of the genome-
editing machinery to affected tissues (for in vivo
therapy®°).

IMMUNO-ONCOLOGY
Genome editing is being used in clinical trials
for the purpose of improving CAR T-cell therapy
(ClinicalTrials.gov numbers, NCT02808442 and
NCT02746952; see Table 1)*° and can be used in
a number of other ways. NHEJ-mediated editing,

which is used to remove the alloreactivity of
T cells by knocking out TCRA (which encodes
TCRa), could also be used to remove immuno-
genicity by knocking out B2M (which encodes
B2-microglobulin) and perhaps to increase the
potency of cells by removing molecules that in-
hibit their function or accelerate their exhaustion.
HDR-mediated editing can be used to ensure
that genes are inserted into a specific locus.®

REGENERATIVE MEDICINE

One generally unrealized promise of cell-based
therapies is the use of cells or stem cells to re-
place or restore diseased, damaged, or aging tis-
sue. Genome editing provides a method of engi-
neering cells to increase their potency and safety.
Examples of combining regenerative medicine
with genome editing include engineering cells to
secrete protective factors that prevent neuro-
degeneration and providing safety switches that
readily eliminate cells if they start to cause harm.

SYNTHETIC BIOLOGY

Synthetic biology involves engineering a cell to
perform a function it does not normally have. It
is now possible to genetically edit cells to secrete
therapeutic proteins and to use those cells to
influence the physiology of an animal. Examples
of combining genome editing and synthetic biol-
ogy include engineering cells to secrete erythro-
poietin”® or wound-healing growth factors.” It
may become possible to engineer cells to divide,
migrate, respond, signal, and secrete in ways that
are therapeutically useful to the environment of
diseased tissues.

HUMAN GENOME EDITING
— HOW TO APPLY?

In 2017, the international study committee con-
vened by the National Academies of Sciences,
Engineering, and Medicine concluded that with
appropriate regulatory oversight (which does not
currently exist in all countries), the use of hu-
man genome editing in the study of very early
human development would be likely to yield im-
portant and unexpected knowledge and should
proceed but that its use for enhancement (the
creation of traits in healthy humans unrelated to
the treatment or prevention of serious disease)
should not be pursued.” In contrast with previ-
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ous assessments, the committee concluded that
genome editing that resulted in the transmission
of the edit to future generations (heritable or
germline editing) might be viewed as acceptable
under certain very specific circumstances.” The
criteria for the possible use of heritable genome
editing are strict, have not yet been met, will be
challenging to satisfy, and should be interpreted
as a functional moratorium. In the United King-
dom, the Nuffield Council on Bioethics released
a report with conclusions similar, though not
identical, to those of the international study
committee.”” There is a broad consensus that
ongoing inclusive and transparent discussion of
the applications of genome editing to humans is
critical.

The need for transparency and many of the
other criteria proposed by the international study
committee and the Nuffield council were violated
by the unethical application of genome editing
to embryos subsequently born as twins, as re-
ported at the Second International Summit on
Human Genome Editing in November 2018 in
Hong Kong. No report on the case of the twins
has been published, and the outcome has not
been verified. In any case, even if the twins de-
velop with no adverse events, the work was irre-
sponsible and reckless and violated broad inter-
national norms regarding the application of
genome editing to human embryos. It highlights
the urgency of developing international standards
that can be referred to and used to deter such

unethical and irresponsible applications from
occurring in the future.

CONCLUSIONS

Genome editing represents a transformative means
of generating medicines and gives the engineer-
ing of the genome a precision that has not previ-
ously been possible. Nonetheless, it is a nascent
technology, and it is prudent to first apply it in
patients with serious conditions. In early phase 1
and phase 2 clinical trials in humans, it will be
important to pay attention to details that cannot
be explored in preclinical studies and that may
facilitate an iterative approach to improving the
molecular process involved in genome editing.
Once this process has been established as safe
and efficacious, its application to less serious
diseases could be considered.

A critical issue associated with the develop-
ment of gene-editing therapies is the goal of
making them broadly accessible. The cost of
these therapies is likely to be extremely high
initially, but cost-benefit analyses, including the
cost of care over the lifetime of a patient, may
provide justification for their use. Nonetheless,
it will be important to control costs to improve
equality of access, and continued attention to
strategies such as prevention through genetic
counseling will remain important.

Disclosure forms provided by the author are available with the
full text of this article at NEJM.org.
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