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Abstract

Despite remarkable progress in medium-term overall survival
benefit in the adjuvant, neoadjuvant and metastatic settings,
with multiple recent targeted drug approvals, acquired
resistance, late relapse, and cancer-related death rates remain
challenging. Integrated technological systems have been
developed to overcome these unmet needs. The characteriza-
tion of structural and functional noncoding genome elements
through next-generation sequencing (NGS) systems, Hi-C and
CRISPR/Cas9, as well as computational models, allows for
whole genome and transcriptome analysis. Rapid progress in
large-scale single-biopsy genome analysis has identified several
novel breast cancer driver genes and oncotargets. The
exploration of spatiotemporal tumor evolution has returned
exciting while inconclusive data on dynamic intratumor
heterogeneity (ITH) through multiregional NGS and single-cell
DNA/RNA sequencing and circulating genomic subclones
(cGSs) by serial circulating cell-free DNA NGS to predict and
overcome intrinsic and acquired therapeutic resistance. This
review discusses reliable breast cancer genome analysis data
and focuses on two major crucial perspectives. The validation
of ITH, cGSs, and intrapatient genetic/genomic heterogeneity
as predictive biomarkers, as well as the valid discovery of novel
oncotargets within patient-centric genomic trials, encouraging
early drug development, could optimize primary and secondary
therapeutic decision-making. A longer-term goal is to identify

the individualized landscape of both coding and noncoding key
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mutations. This progress will enable the understanding of
molecular mechanisms perturbating regulatory networks,
shaping the pharmaceutical controllability of deregulated

transcriptional biocircuits.

KEYWORDS
biomarkers, breast cancer, drugs, intrapatient heterogeneity,
next-generation sequencing systems, precision therapy, regulatory

networks

1 | INTRODUCTION

Over the past decade, Modern Oncology and Pharmacology have been based on linear static experimentation, single-
biopsy tumor analysis, and single-gene transcription. Although breast cancer represents a prime paradigm of advancing
progress in targeted and personalized treatment, reflected by improved oncological outcomes, a significant proportion
of patients remains at risk of late relapse and death.? Currently, conventional research, as well as commercial and
funding interest are focused on the concept of static interpatient genetic heterogeneity as an already fruitful approach.®
Whether scientific perspectives should shift toward promising comprehensive dynamic structural intrapatient genomic
heterogeneity,*® as well as temporal regulatory networks controlling gene expression in the human genome’~? and

t,'° is currently under debate.

nonlinear transcription-based drug developmen

Remarkable progress in the integration of next-generation sequencing (NGS) technologies and breakthrough
NGS systems into patient-derived sample genome analysis over the past years has produced evidence on the
emergence of genomic and transcriptional heterogeneity in time and space.%*? Personalized structural mutational
landscapes, including dynamic intratumor heterogeneity (ITH) before and after neoadjuvant treatment (NAT)® and
NGS of serial circulating cell-free DNA (cfDNA) samples (cFDNA-NGS),*® could be used as predictive biomarkers
guiding precise therapeutic targeting of key druggable mutations.® Moreover, the validity in the identification of

functional noncoding regulatory mutations,*

9,15

coupled with computational, mathematical, and genome-editing
tools, could enhance our understanding on the controllability of dysregulated transcriptional networks.®

On the basis of data analysis of valid genomic studies, we propose a novel design for breast cancer clinico-
genomic trials applying NGS systems. The aims of these trials include the evaluation of the predictive power of
dynamic ITH and circulating genomic subclones (cGSs), as well as the valid identification of new targetable
mutations. In a more distant perspective, we discuss the potential and challenges in the future integration of the
personalized comprehensive functional, in addition to the structural, mutational landscape, which could enhance
our understanding of regulatory networks as the foundation for future pharmaceutical controllability of

dysregulated transcriptional biocircuits (Figure 1).

2 | MODERN ONCOLOGY: ADVANCES AND CHALLENGES

Remarkable progress in breast cancer research has been translated into standardization of clinical treatment,
including surgery, radiotherapy, chemotherapy, endocrine, and targeted treatment. Following the strict criteria for
evidence-based medicine, multiple phase Il randomized controlled trials and meta-analyses guiding therapeutic
decision-making have progressively led to substantial improvements in survival and cancer-related death rates.2¢

Breast cancer represents an excellent example of rapid research advances toward interpatient heterogeneity-
based personalized treatment. Primary therapeutic decision-making, crucial for reducing the risk of relapse and

death, takes into consideration both the clinico-pathologic (age, TNM-staging, histological grade) and the molecular
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FIGURE 1 Integrating genome analysis and editing technologies into appropriate clinico-genomic studies to
overcome unmet needs. Step-wise delineation of the shift from current single-tumoral biopsy approach, on the
basis of static tumor homogeneity and linear transcription-based drug development, to spatiotemporal genome,
transcriptome and regulatory network exploration. This strategy could lead to optimization of precise
individualized prediction-based breast cancer therapy. NGS, next-generation sequencing; RNAseq, RNA
sequencing; WES, whole-exome sequencing; WGS, whole-genome sequencing. *Optimal selection of appropriate
genomic studies among published reports [Color figure can be viewed at wileyonlinelibrary.com]

(ER/PR/HER2, BRCA1/2 status) characteristics for each individual patient.? Table 173 summarizes the growing
list of targeted agents for the different molecular subtypes of breast cancer in the adjuvant, neoadjuvant, and
metastatic settings, including HER2-positive, hormone receptor (HR)-positive/HER2-negative, triple-negative, and
BRCA-mutated/HER2-negative tumors, from the approval of trastuzumab in 2001 to multiple recent drug

b,2021 b2 More specifically for early stage,

approvals, namely pertuzuma neratinib maleate,>® and palbocicli
HER2-positive breast cancer, disease-free survival (DFS) has increased from approximately 80% at 4 years
following adjuvant treatment with trastuzumab plus chemotherapy®! to 94.1% at 3 years after adjuvant dual HER2
inhibition plus chemotherapy?® and over 90% 5-year DFS with the addition of neratinib after trastuzumab
chemotherapy.?® These impressive results were achieved independently of ER status.?® In the neoadjuvant setting,
the addition of pertuzumab to trastuzumab-docetaxel in the NeoSphere trial significantly increased pathological
complete response rate (pCR), from 29% to 45.8%°2 and improved progression-free and disease-free survival.?!
Despite these advancements, no targeted therapy has been developed and approved against triple-negative
breast cancer (TNBC), with chemotherapy remaining the only available option for systemic treatment. TNBCs carry
1.68 somatic mutations per Mb of coding regions corresponding to approximately 60 somatic mutations in each
tumor.® Remarkably, 10% of TNBC patients carry BRCA1/2 germline mutations, which are associated with an
increased 60% to 70% lifetime risk of breast cancer.3* Lately, a preclinical experimental study on patient-derived

xenografts has reported exciting results after combinatorial inhibition of PTPN12-regulated receptor tyrosine
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TABLE 1 Targeted drugs for breast cancer according to the stage and molecular subclass

Molecular subtype

HER?2 positive

MO

Trastuzumab (as adjuvant or neoadjuvant

therapy, in conjunction with chemotherapy)”:18

Pertuzumab (as adjuvant or neoadjuvant
therapy, in conjunction with trastuzumab

Neratinib maleate (extended adjuvant
treatment after trastuzumab)?®

)20,21

Locally advanced/M1

Trastuzumab®?

Pertuzumab (in conjunction with
trastuzumab and chemotherapy)??

Lapatinib (in conjunction with

chemotherapy or endocrine therapy)?*

Ado-trastuzumab emtansine (after
trastuzumab, lapatinib, and taxanes)25

HR positive/HER2
negative

Not available Palbociclib (in conjunction with

chemotherapy or endocrine therapy)?®

Not available Ribociclib (in conjunction with endocrine

therapy)?’

Not available Abemaciclib (in conjunction with

endocrine therapy)?®

Triple negative No targeted treatment has been approved, promising results have been reported with

combinatorial RTK inhibition of PTPN12-regulated receptors with crizotinib-sunitinib?’

HER2 negative, BRCA
mutated

Not available Olaparib (after chemotherapy)®°

Abbreviations: HER2, human epidermal growth factor receptor 2; HR, hormone receptor; MO, nonmetastatic disease;
M1, metastatic disease; RTK, receptor tyrosine kinase.

kinases (RTKs). More specifically, the combination of crizotinib and sunitinib, inhibiting MET and PDGFRB RTKs,
respectively, achieved significant levels of therapeutic response, leading to 50% tumor regression.?’ Should these
findings be validated within phase I/l clinical trials, more effective therapies could at last become a reality for
TNBC and confirm the clinical utility of umbrella and basket trial designs.3> For instance, crizotinib and sunitinib
have already received approval for non-small-cell lung cancer and gastrointestinal stromal tumors, pancreatic
adenocarcinoma and renal-cell carcinoma, respectively. Moreover, a recent report suggests potential therapeutic

utility of HER kinase inhibition with neratinib?®

36

in patients with HER2/3 mutated cancers, such as breast, cervical,

and biliary tumors.

2.1 | Unmet needs

Despite substantial progress in single-biopsy linear single-gene transcription research, reflected by the
development and approval of several targeted agents, as well as high survival rates, particularly for early stage,
HER2-positive breast cancer, major challenges remain unresolved. First, despite the positive results provided by
adjuvant dual HER2 blockade regarding early recurrence, DFS at 10-year follow-up after adjuvant trastuzumab
chemotherapy remains 69%.2 In the neoadjuvant setting, although pertuzumab plus trastuzumab chemotherapy
significantly increased pCR, the rate is still only 46% for HER2-positive patients.>2 Thus, despite exciting data in the
control of recurrence during the 5-year follow-up, late relapse rates remain high and suggest both intrinsic and,
particularly, acquired therapeutic resistance, confirming the general concept of the temporary efficacy of all
targeted drugs. Second, 5-year DFS for the triple-negative molecular class after adjuvant chemotherapy remains at
77%.%7 Moreover, although the combination of dual HER2 blockade (pertuzumab and trastuzumab) and docetaxel
has improved overall survival for metastatic HER2-positive tumors to over 50% at 3 years, 3-year progression-free
survival is only 20% approximately.?? Third, the modern single-biopsy approach, based on the hypothesis of tumor

stability and homogeneity, comes in direct conflict to current evidence on spatiotemporal tumor evolution,
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producing tumor heterogeneity.>**® Fourth, the linear transcription dogma®® is in contrast with functional
noncoding genome functionality and complex regulatory networks in health and disease.””?3 These unmet needs
could potentially be overcome through the exploration of genomic and transcriptional heterogeneity in time and
space for the development of dynamic predictive biomarkers, as well as the discovery of novel therapeutic targets

and nonlinear transcriptional network-based drugs.

3 | STRUCTURAL GENOME ANALYSIS: DATA AND TRANSLATIONAL
IMPLICATIONS

The validity of NGS in the characterization of human genome elements in health®® and disease, particularly in

41,42

cancer,*® has revolutionized biomedical research. Two large-scale international cancer projects, aiming to

complete the cancer driver gene and mutation catalog for multiple cancer types, have already reported significant
basic and translational research progress. Evidence on extensive genomic and transcriptional heterogeneity,?*3
and the shift from static, single-biopsy genome analysis to spatiotemporal identification of genomic clones in
multiple tumoral and liquid biopsies® shape the framework for personalized treatment. Considering the ENCODE

739 as well as transcriptional

project on cell-specific genomic variability in the healthy human genome,
heterogeneity in cancer,*? including transcription factors (TFs), TF-binding site mutations and transcriptional
networks, basic research on regulatory networks is crucial for the future pharmaceutical controllability of
deregulated transcriptional biocircuits.'®

The high incidence of breast cancer among women, combined with the relatively simple acquisition of patient-
derived samples, have led to a large number of NGS studies. Static analyses implement targeted NGS (tNGS), 364445
whole-exome (WES),14434446-52 \yhole-genome (WGS),>%5153-5¢ and/or RNA (RNAseq)***25¢57 sequencing,

5135874 includes

based on a single-tumoral biopsy approach (Table 2).2443-57 Breakthrough NGS analysis (Table 3),
the static or spatiotemporal exploration of ITH either with NGS analysis of multiregional (MR) tumor samples
(MR-NGS)>°8-%0 or single-cell DNA/RNA NGS,°17¢* the identification of cGSs through cfDNA-NGS at a single®>-¢8

or multiple serial time points,13¢%-74

as well as the comparative analysis of the above for the identification of
comprehensive intrapatient genetic/genomic heterogeneity (IPGH) in patients without relapse or metastasis.”>
Among those with metastasis or recurrence IPGH refers to the comprehensive comparisons between ITH, cGSs,
and genetic/genomic alterations of the relapsed or metastatic tumors.® This strategy can provide solid evidence on

“resistant” subclones through cfDNA-NGS, responsible for relapse or metastasis.

3.1 | Static, single-biopsy structural genome analysis

The recent widespread application of tNGS in laboratory and clinical research has enabled the evaluation of
targeted therapies within clinical trials of the umbrella and basket designs. Remarkably, such trials have provided
promising preliminary results. For instance, Hyman et al,%® explored the clinical significance of HER2 and HER3
mutations in a variety of cancers and the effectiveness of the pan-HER kinase inhibitor neratinib against those
tumors. Highest efficacy, while still lower than approved targeted therapies, was observed for HER2 mutant breast,
cervical and biliary cancers, suggesting the potential for combinatorial targeted treatment and providing proof of
concept for advancing genome-based oncology through molecularly driven clinical trials. No responses to neratinib
were observed in patients with HER3-mutant tumors, in contrast to previous findings.”® Beyond targeted
sequencing of known-gene panels, single-biopsy WES, WGS, and RNAseq are used for the valid detection of new
cancer driver genes, robust biomarkers, and oncotargets. Large static genomic analyses (Table 2)443-57 have
recently identified approximately 10 novel cancer driver and susceptibility genes that could potentially
complement and further enhance current genetic screening. 347485054 Geveral actionable mutations were
identified, including a novel MAGI3-AKT3 gene fusion, putatively targetable by existing drugs, such as BRAF and Akt
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inhibitors.*”°° Moreover, genome analysis has uncovered novel biomarkers predicting therapeutic response to
aromatase inhibition, namely GATA3 mutations®! and activation of E2F4-regulated genes,*® although the
predictive power of these tools remains to be validated. Additionally, recent reports imply that NGS could be used

for the stratification of patients based on specific prognostic biomarkers.4”>3

3.2 | Genome exploration in time and space

Considering the dynamic evolution of genomic clones by the Darwinian principles* and temporal emergence of
ITH®> as major causes of intrinsic and acquired therapeutic resistance,® integrated NGS systems have been
developed to explore spatiotemporal tumor evolution. Thus, a shift from static single-biopsy to multiple tumoral
and liquid biopsy analysis of genome evolution in time and space is essential to overcome therapeutic resistance.
Furthermore, detection of cGSs, which have escaped from the primary tumor and into the circulation, provides
valuable data for early diagnosis, understanding and predicting tumor recurrence, primary and secondary decision-

13,66 Table 35,13,58774

making, as well as patient monitoring. provides an overview of published data from

breakthrough NGS studies, including reports on ITH and cGS identification.

3.2.1 | Intratumor heterogeneity

Exploration of static and dynamic ITH could provide crucial clinical implications in the field of prognostic and
predictive biomarkers to guide more effective personalized systemic therapy.® Yates et al,® in a very influential
MR-NGS study, have reported dynamic clonal evolution in response to NAT with a significant proportion of
patients harboring subclonal targetable alterations. The emergence of resistant subclones after NAT bares great
clinical significance for post-NAT therapeutic decision-making on available or new to be developed targeted agents
against the identified resistant oncotargets. Moreover, single-cell NGS analysis further supports dynamic

diversification of genomic clones during the course of breast cancer,527¢

with more detailed analysis suggesting
that point mutations are responsible for spatiotemporal clonal evolution and ITH.%* In contrast, large genome
changes, namely chromosomal rearrangements and copy number alterations, appear to pre-exist within the primary
tumor and remain stable over the disease course.®>** These findings are consistent with the data provided by Tang
et al through MR-NGS, similarly to other cancer types.’®”> These results require confirmation by appropriately

designed large-scale genomic trials.

3.2.2 | Circulating genomic subclones

The breakthrough concept of cGS detection through cfDNA-NGS has recently been extensively investigated as a
powerful platform to develop noninvasive blood tests to complement and further enhance current screening and
diagnostic strategies. Cohen et al®® developed a multianalyte blood test based on plasma genetic and protein
biomarkers named CancerSEEK, which promises the detection of eight surgically resectable cancer types with
sensitivity and specificity of 70% and greater than 99%, respectively. However, sensitivity in the diagnosis of early
breast cancer was only 33%, rendering it ineffective as a diagnostic tool in its current form for breast cancer.®®
Similarly low sensitivity rates for breast cancer have also been reported by the first large-scale clinical trial
evaluating cfDNA-NGS as a diagnostic biomarker (NCT02889978), in a preliminary substudy with 810
participants.®®> Ongoing and new clinical trials, in conjunction with basic research progress in this field, could
elucidate on the low sensitivity rates for breast as compared with other cancer types. Other smaller studies have
also investigated the diagnostic®® and prognostic®” significance of cGSs, with findings requiring validation through
large and appropriately designed studies.

Besides potential diagnostic utility, a series of innovative small-scale studies have investigated liquid biopsies at

consecutive time points as a monitoring tool to predict secondary therapeutic resistance and recurrence before
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clinical-imaging diagnosis. Since the breakthrough study of Murtaza et al*® which introduced the concept of serial
liquid biopsies by cfDNA-NGS and highlighted its putative predictive capacity, multiple independent reports have

70,71,74 13,69-74

demonstrated both the prognostic, as well as the predictive capabilities of temporal noninvasive NGS.

Higher levels of circulating tumor DNA (ctDNA) were once again associated with poor disease-free and overall

1,7° while ctDNA was nondetectable in patients with pCR to neoadjuvant chemotherapy.”? Specific

surviva
mutations were markers of primary and secondary therapeutic resistance and short progression-free survival,
including HER2 amplifications, TP53, and phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin
(mTOR) pathway mutations.”*

Additionally, all studies underlined two major key points. The first is the potential capacity of serial cfDNA/
ctDNA-NGS as a predictive biomarker. Liquid biopsy-based patient monitoring has demonstrated highly promising
results on the prediction of resistance to systemic therapy, including endocrine and targeted treatment, proposing
markers of resistance, such as HER2, TP53, PI3K/mTOR, CREBBP, and SMAD4 mutations.”*”374 Two studies have
suggested that molecular detection of therapeutic resistance could precede clinical diagnosis of disease

69,70 17° reporting identification of metastasis at a median of 11 months before clinical

relapse, with Olsson et a
diagnosis. Furthermore, a registered clinical trial by Ma et al (NCT01937689)”* on metastatic HER2-positive breast
cancer underlined the potential for patient monitoring by ctDNA copy-number analysis, guiding secondary
decision-making on therapy. The second is the universal support of the Darwinian model in the evolution of breast
cancer.13%%74 Spatiotemporal evolution of genomic clones due to selective pressure, such as systemic therapy,
more convincingly explains the clinical course of breast cancer, characterized by excellent short-term and medium-
term oncological outcomes and late emergence of therapeutic resistance and recurrence, in contrast to the theory
of pre-existence of a minor aggressive cell subpopulation within the primary tumor, which could apply to the TNBC
subtype®? or other more aggressive tumors.”” Nevertheless, studies implementing dynamic liquid biopsies are still

scarce, small-scale, and lack a strict clinically-centered protocol, warranting further future investigation.

4 | FUNCTIONAL, NONCODING MUTATIONAL LANDSCAPE, AND
REGULATORY NETWORKS

4.1 | Noncoding regulatory mutations in breast cancer

Most cancer-associated mutations have already been localized in noncoding parts of the genome by genome-wide
association studies.”® Consequently, noncoding functional mutations have gained significant research spotlight due
to their impact on gene regulation and expression and potential subsequent clinical relevance (Table 2).1441-55
Noncoding alterations have been recurrently identified in breast cancer within regulatory regions of cancer-related

14,52,56

genes, including promoters and enhancers, possibly at similar frequencies as coding mutations.’* Noncoding

variants of two genes (CRTC3 and STAG2) were identified as prognostic factors in a specific subset of breast cancer

1* highlighted mutations affecting FOXA1 expression,

patients (ER-positive/HER2-negative),>2 while Rheinbay et a
coding and noncoding, as potential markers of therapeutic resistance and disease progression. Taken together,
these results open new exciting doors towards understanding the intricacy with which regulatory networks control

gene expression.

4.2 | Transcriptional network interactions and genome editing

The exploration of complex interactions between regulatory elements within transcriptional networks has posed a
great research challenge. New, enhanced high-throughput methods, such as Hi-C and ChIA-PET, have been
developed, improving upon the chromosome conformation capture (3C) technique, which can reveal the physical
interactions between enhancers and promoters, beyond functional correlations probed by genomic studies.””? Hi-C

studies have reported the spatial organization of the genome into topologically associated domains.®® Normally,
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promoter-enhancer interactions take place within these domains but not between them.8® However, disruption of

domain boundaries and long-range interplay between distant elements has been associated with disease,®!

t’? and other cancers.®2 ChIA-PET can construct chromatin interaction maps with even greater

including breas
detail, further facilitating the match of TF-binding sites to the respective target genes.®® Interestingly, these studies
suggest that cell-type specificity is not limited to gene expression, but also regulatory element interactions, leading
to cell-specific transcriptional activation.2® Nevertheless, chromatin interaction assays only characterize the spatial
architecture of the genome, not distinguishing functional from nonfunctional relations.

Recently, genome editing tools, especially transcription activator-like effectors and the highly versatile
CRISPR/Cas9, have provided unprecedented potential in the exploration of noncoding genome functionality,
with their ability to accurately alter single nucleotides in the genome and observe the phenotypic results
through reverse genetics.” These systems are utilized by basic research to determine the functional impact of
specific mutations in disease-associated loci through the identification of functionally relevant genetic
variations in several diseases, including neurodevelopmental disorders®* and cancer.8> Genome editing screens
target both protein-coding genes and noncoding elements with the latter being distinguished in two major
categories based on design. The first focus on regions proximal to specific genes under investigation,8®

including regulatory elements and their interplay, such as promoter-promoter interactions,®”

aiming to
correlate regulatory mutations with phenotypic events such as therapeutic resistance and progression, as
demonstrated by Sanjana et al®8 for melanoma. The second target selected TF-binding sites, such as enhancers,
regulating cancer-related genes, as for instance TP53.8? Moreover, these tools allow for selective perturbation
of the activity of targeted regulatory elements through epigenome editing,’® providing an additional means to
investigate gene regulation and transcriptional networks.

Thus, genome editing systems are a powerful platform for the identification of novel therapeutic targets by
uncovering genetic vulnerabilities in genes essential for tumor cell viability, metastasis, and drug resistance.”® In
this regard, Hart et al’? recently generated an extended list of over 1500 such essential genes in cancer cell-lines,
five times more than previously reported. Furthermore, highly innovative studies have lately reported the use of
CRISPR-based screening and single-cell RNA-NGS in conjunction, demonstrating high precision in the correlation of
genes to biological processes and promising accurate and efficient dissection of complex cellular responses.”®
However, CRISPR-based analyses are limited by the small number of targets and expansion to the whole-genome
level is required before the completion of the regulatory element catalog becomes a realistic goal.

During the past decade and following the completion of the human genome sequence, tremendous effort has
been concentrated towards understanding how mutations within regulatory networks affect network interactions
and promote pathogenesis, aiming to translate the vast amount of data generated by genomic studies into clinical

benefit.?*

However, experimental, as well as computational network reconstruction has been hindered mainly by
the complexity of genotype-to-phenotype relationships between diseases and their associated genes.”* Based on
the eight established hallmarks of cancer®® and exploiting genome sequencing data, a cancer hallmark network
framework has been proposed to predict complex phenotypic events, such as tumorigenesis, relapse, and
metastasis.”®?” Although the temporality of cellular networks presents as a fundamental advantage putatively
enabling network manipulation,® traditional statistical tools are unsuitable to reliably characterize the intricate
intra- and intercellular network comprising the interactome.’® Thus, network reconstruction requires the design of
enhanced computational algorithms implementing interaction matrix and temporal data,” with both medical and

pharmaceutical interest towards next-generation biomarker and drug development.*?8

5 | FUTURE OUTLOOK

Over the past decade, rapid progress in single-gene linear transcription-based drug development has been

successfully integrated into clinical practice improving oncological outcomes of breast cancer patients. However,
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Patient stratification according to TNM staging and molecular class into
groups of adjuvant, neo-adjuvant and metastatic settings

Treatment for metastatic

Adjuvant treatment (AT) Neo-adjuvant treatment (MAT) jisaate

*

Pre-treatment circulating genomic subclone identification through cfDNA-NGS

L. L.

Surgical specimen ITH ITH before (core biopsy) and ITH of primary and

: ::;iiu DNA/RNA NGS after (surgical specimen) NAT metastatictumor biopsies
Mo recurrence Recurrence No pCR pCR Progression-free  Progression
Early Late Recurrence No recurrence

Serial cfDNA-NGS to identify resistant subclones and predict relapse: Comprehensive
dynamic intra-patient genetic/genomic heterogeneity (cGS vs ITH vs RT mutations)
could reveal and validate mutations responsible for relapse

Valid discovery of novel oncotargets and early drug development
strategy to precisely target resistant actionable mutations

Adjuvant setting Neo-adjuvant setting Metastatic setting

Early targeting of emerging oncotargets several months
before clinical/imaging diagnosis based on cfDNA-NGS

If clinico-genomic trials are positive

Significant improvement of recurrence-free survival rates
will highlight the advent of clinical Precision Oncology

FIGURE 2 Patient-centric genomic trials in a step-wise strategy to achieve precise prediction-based
individualized breast cancer therapy. Potential establishment of ITH, cGSs, and IPGH as robust predictive
biomarkers, as well as oncotarget-based drug development, could enable precise prediction-based individualized
therapy. Spatiotemporal emergence of resistant genomic subclones could be detected by pre and posttreatment
patient monitoring through serial liquid biopsies, considering ITH and RT alterations, to predict and promptly
target resistant mutations before clinical relapse, therefore improving oncological outcomes. cfDNA, cell-free DNA,;
cGSc, circulating genomic subclones; IPGH, intrapatient genetic/genomic heterogeneity; ITH, intratumor
heterogeneity; MR, multiregional; NGS, next-generation sequencing; pCR, pathologic complete response;

RT, relapsed tumor [Color figure can be viewed at wileyonlinelibrary.com]

personalized prediction of acquired therapeutic resistance and late relapse remains challenging. Integration of
genome analysis, including NGS systems, Hi-C, and CRISPR/Cas9, into basic and translational research, coupled
with computational strategies, has provided exciting results on the spatiotemporal characterization of structural
and functional cancer genome and transcriptome elements. Breast cancer genome analysis has achieved several
goals, including at least a dozen novel cancer genes and oncotargets for future drug development. Promising data
on early noninvasive diagnosis has been reported.®>%¢ Moreover, exciting but still inconclusive data have emerged
regarding the spatiotemporal diversification of genomic clones with the dynamic emergence of tumor
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heterogeneity.*~41270:100.101 B,ring the next decade, the roadmap for overcoming resistance and relapse includes
two major goals, patient-centric genomic trials and understanding how noncoding genome functionality affects

regulatory networks and gene expression.

5.1 | Clinico-genomic trials

6566 much more

Despite high sensitivity in the early diagnosis of some cancer types excluding breast cancer,
sophisticated trial designs on spatiotemporal exploration of tumor evolution are essential to accurately predict
intrinsic and particularly acquired therapeutic resistance.”® A step-wise process includes patient stratification into
groups of adjuvant or NAT and metastatic setting according to recent guidelines for diagnosis, molecular
classification, and personalized treatment. The innovative strict protocol, abiding by clinical and genomic
recommendations, could reveal the clinical implications of IPGH and, for the first time, provide evidence on
resistant cGSs to predict primary and acquired therapeutic resistance. Should these studies provide positive results,
ITH, cGSs, and IPGH could be validated as prognostic and predictive biomarkers to accurately predict therapeutic
resistance and relapse. Serial cGS detection, considering ITH of the primary tumor and IPGH validating circulating
“resistant” subclones responsible for relapse, could not only predict recurrence several months before clinical
diagnosis but also prolong time to relapse through early precise targeting of circulating druggable genomic

alterations (Figure 2).

5.2 | Potential controllability of transcriptional networks

The promising findings on functional noncoding mutations in promoters and enhancers targeting cancer-related
genes, %256 derived from WES/WGS and RNAseq studies, coupled with dropping costs, will allow for the
completion of a breast cancer-specific catalog of both functional noncoding TF-binding site mutations and TFs.
Considering noncoding genome functionality and transcriptional networks controlling gene expression in the
healthy human genome,”®? the exploration of temporal perturbated regulatory networks in disease is imperative.
Nevertheless, one of the greatest future challenges is the delineation of molecular mechanisms and principles
orchestrating the perturbation of regulatory networks. To achieve this goal, further technological refinements are
required, including the integration of interaction mapping and genome editing tools, as well as computational
systems and network reconstruction models, into innovative studies exploring genome, and interactome mapping in
time and space. On this basis, a translational framework is shaped, aiming to pharmaceutically control intricate
dysregulated transcriptional biocircuits by next-generation drugs disrupting nonlinear networks. However, lack of
financial support from the private sector due to nondirect profit represents a major hurdle in speeding up the

advent of nonlinear transcription-based drug development.®

6 | CONCLUSIONS

Recent evidence on extensive genomic and nonlinear transcriptional heterogeneity, due to spatiotemporal
clonal evolution rather than minor pre-existing genomic clones drives two major research directions. The first
medium-term evidence-based strategy is centered on the conduction of patient-centric genomic trials to
establish dynamic ITH, cGSs, and IPGH as biomarkers for the individualization of therapy. Both single and
multiple biopsy-based trials could discover novel valid oncotargets guiding an early drug development strategy.
Prediction of drug response encourages optimized targeted agent combinations from a future comprehensive
drug bank. However, the ultimate optimization of precise therapy will require a two-step approach. The first
step is the completion of a comprehensive catalog of all breast cancer-specific structural and functional

noncoding mutations. The second and much more complex is the discovery of molecular mechanisms and
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principles driving the perturbation of regulatory networks, opening the new horizon of pharmaceutical

controllability of temporal transcriptional networks. These advancements will realize the shift from inexact

medicine to precision life science, including accurate individualized prediction-based therapy.
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