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Clonal evolution in breast cancer revealed
by single nucleus genome sequencing
Yong Wang1, Jill Waters1, Marco L. Leung1,2, Anna Unruh1, Whijae Roh1, Xiuqing Shi1, Ken Chen3, Paul Scheet2,4, Selina Vattathil2,4,
Han Liang3, Asha Multani1, Hong Zhang5, Rui Zhao6, Franziska Michor6, Funda Meric-Bernstam7 & Nicholas E. Navin1,2,3

Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into
the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach
called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single
normal and tumour nuclei from an oestrogen-receptor-positive (ER1) breast cancerand a triple-negative ductal carcinoma. In
parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in
tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved
gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations
were shown to occur at low frequencies (,10%) in the tumour mass. Using mathematical modelling we found that the
triple-negative tumour cells had an increased mutation rate (13.33), whereas the ER1 tumour cells did not. These findings
have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

Human breast cancers often display intratumour genomic heterogeneity1–3.
This clonal diversity confounds the clinical diagnosis and basic research
of human cancers. Expression profiling has shown that breast cancers
can be classified into five molecular subtypes that correlate with the pre-
sence of oestrogen, progesterone and Her2 receptors4. Among these,
triple-negative breast cancers (ER2/PR2/Her22) have been shown to har-
bour the largest number of mutations, whereas luminal A (ER1/PR1/
Her22) breast cancers show the lowest frequencies5–7. These data sug-
gest that triple-negative breast cancers (TNBCs) may have increased
clonal diversity and mutational evolution, but such inferences are dif-
ficult to make in bulk tissues8,9. To gain better insight into the genomic
diversity of breast tumours, we developed a single cell genome sequen-
cing method and applied it to study mutational evolution in an ER1

breast cancer (ERBC) and a TNBC patient. We combined this approach
with targeted duplex10 single-molecule sequencing to profile thousands
of cells and understand the role of rare mutations in tumour evolution.

Whole-genome sequencing using G2/M nuclei
In our previous work we developed a method using degenerate-
oligonucleotide PCR and sparse sequencing to measure copy number
profiles of single cells11. Although adequate for copy number detection,
this method could not resolve genome-wide mutations at base-pair reso-
lution. We attempted to increase coverage by deep-sequencing these
libraries, but found that coverage breadth approached a limit near 10%
(Fig. 1a). To address this problem, we developed a high-coverage, whole-
genome and exome single cell sequencing method called nuc-seq (Ex-
tended Data Fig. 1). In this method we exploit the natural cell cycle, in
which single cells duplicate their genome during S phase, expanding
their DNA from 6 to 12 picograms before cytokinesis. This approach
provides an advantage over using chemical inhibitors to induce poly-
ploidy in single cells12,13 because it does not require live cells.

We input four (or more) copies of each single cell genome for whole-
genome-amplification (WGA) to decrease the allelic dropout and false

positive error rates, which are major sources of error during multiple-
displacement amplification (MDA)14,15. Additionally, we limit the MDA
time to 80 min to mitigate false positive (FP) errors associated with the
infidelity of the w29 polymerase (Methods). The improved amplifica-
tion efficiency can be shown using 22 chromosome-specific primer pairs
for PCR (Extended Data Fig. 2). In G1/G0 single cells we find that only
25.58% (11/43) of the cells show full amplification of the chromosomes,
whereas G2/M cells have 45.34% (39/86). After MDA, we incubate the
amplified DNA with a Tn5 transposase, which simultaneously fragments
DNA and ligates adapters for sequencing16. The libraries are then multi-
plexed for exome capture or used directly for next-generation sequencing.

Method validation in a monoclonal cancer cell line
To validate our method we used a breast cancer cell line (SK-BR-3) that
was previously shown to be genetically monoclonal11,17. We evaluated
the genetic homogeneity of this cell line using spectral karyotyping and
found that large chromosome rearrangements were highly stable in
85.80% of the single cells (Supplementary Table 1). We also performed
single nucleus sequencing (SNS)11,18 on 50 single SK-BR-3 cells and cal-
culated copy number profiles at 220 kilobase (kb) resolution, which
showed that the major amplifications of MET, MYC, ERBB2, BCAS1
and a deletion in DCC were stable (mean R2 5 0.91) in all of the 50 cells
(Fig. 1b). Next, we deep-sequenced the SK-BR-3 cell population (SKP)
at high coverage depth (513) and breadth (90.40%) and detected single-
nucleotide variants (SNVs), copy number aberrations (CNAs) and struc-
tural variants (SVs) using our processing pipeline (Methods). We filtered
the variants using dbSNP135 and identified 409 non-synonymous var-
iants and 1,452 structural variants (Fig. 1d), several of which occurred in
cancer genes (Supplementary Table 2).

We applied nuc-seq to sequence the whole genomes of two single
SK-BR-3 cells (SK1 and SK2) and calculated coverage depth, breadth
(sites with at least one read) and uniformity (evenness). We found that
both SK-BR-3 cells achieved high coverage depth (613 6 5 s.e.m., n 5 2)
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and breadth (83.70 6 3.40% s.e.m., n 5 2) (Fig. 1e). In comparison, we
re-analysed coverage breadth in single cells sequenced by MALBAC19

using unique reads and calculated 69.54% coverage breadth. We eval-
uated coverage uniformity using Lorenz curves20 which showed highly
uniform coverage, representing a major improvement over our previous
SNS method11,18 and is equivalent to the MALBAC data19 (Fig. 1c). Next,
we calculated error rates, including the allelic dropout rate (ADR) and
false positive rate (FPR) by comparing single cell variants to the popu-
lation data (Methods). Our analysis suggests that nuc-seq generates low
allelic dropout rates (9.73 6 2.19%) compared to previous studies (7–
46%)14. We also achieved low false positive error rates for point muta-
tions (FPR 5 1.24 3 1026), equivalent to 1–2 errors per million bases,
which represents a major technical improvement over previous methods14,19

(FPR 5 2.52 3 1025 and 4 3 1025).

Population and single nuclei sequencing of an ERBC
We selected an invasive ductal carcinoma from an oestrogen-receptor
positive (ER1/PR1/Her22) breast cancer patient for population and
single cell sequencing (Fig. 2a, Methods). We flow-sorted millions of
nuclei from the aneuploid G2/M peak (6N) and from matched normal
tissue for population sequencing (463 and 543) (Fig. 2b). We also flow-
sorted 50 single nuclei for copy number profiling, 4 nuclei for whole-
genome sequencing and 59 nuclei for exome sequencing. After filtering
germline variants, we identified a total of 4,162 somatic SNVs in the aneu-
ploid tumour cell population. Among these SNVs we identified 12 non-
synonymous mutations, which we validated by exome sequencing (663).
Several non-synonymous mutations occurred in cancer genes, including
PIK3CA, CASP3, FBN2 and PPP2R5E (Fig. 2c, Supplementary Information).
PIK3CA is the most common driver mutation in luminal A breast cancers7,9.

To investigate copy number diversity, we performed single nucleus
sequencing11,18 on 50 single nuclei. We constructed a neighbour-joining
tree, which showed that single tumour cells shared highly similar CNAs

(mean R2 5 0.89), representing a monoclonal population (Fig. 2d, Ex-
tended Data Fig. 3a). Next, we performed whole-genome sequencing of
four single tumour nuclei at high coverage breadth (80.79 6 3.31%
s.e.m., n 5 4) and depth (mean 46.753 6 5.06 s.e.m., n 5 4). From this
data we identified three classes of mutations: (1) clonal mutations,
detected in the population sample and in the majority of single tumour
cells; (2) subclonal mutations, detected in two or more single cells, but
not in the bulk tumour; and (3) de novo mutations, found in only one
tumour cell. The de novo mutations are difficult to distinguish from
technical errors and were therefore excluded from our initial analysis.
In total we detected 12 clonal non-synonymous mutations and 32 sub-
clonal mutations (Fig. 2e). Many subclonal mutations occurred in inter-
genic regions; however, two mutations (MARCH11 and CABP2) were
found in coding regions (Supplementary Table 4).

To identify additional subclonal mutations, we performed single nuclei
exome sequencing on a larger set of cells (47 tumour cells and 12 normal
cells). Each nucleus was sequenced at 46.783 (46.786 4.95, s.e.m., n 5 59)
coverage depth and 92.77% (92.776 4.85, s.e.m., n 5 59) coverage breadth,
from which somatic mutations were detected (Supplementary Table 5).
The mutations were clustered and sorted by frequency to construct a
heatmap (Fig. 2f). As expected, the 17 clonal mutations identified by
population sequencing were present in many of the single tumour cells,
however, we also identified 22 new subclonal mutations. In contrast,
only a single subclonal mutation was detected in the 12 normal cells
(Fig. 2f, right panel).

Population and single nuclei sequencing of a TNBC
We then proceeded to analyse a triple-negative (ER2/PR2/Her22) breast
cancer (TNBC) (Fig. 3a). We performed population sequencing of the
bulk tumour (723) and matched normal tissue (743), and identified
374 non-synonymous mutations. A number of mutations occurred in
cancer genes, including PTEN, TBX3, NOTCH2, JAK1, ARAF, NOTCH3,
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MAP3K4, NTRK1, AFF4, CDH6, SETBP1, AKAP9, MAP2K7, ECM2 and
ECM1 (Supplementary Table 6) (Fig. 3b). Many of these mutations were
previously reported in the TCGA breast cancer cohort7. Pathway analysis
revealed two major pathways that were disrupted during tumour evolu-
tion: TGF-b (P 5 9.93 1022) and extracellular matrix-receptor signalling
(P 5 2.731022). Copy number profiling identified many chromo-
somal deletions, in addition to a focal amplification on chromosome
19p13.2 (Fig. 3b).

To investigate genomic diversity at single cell resolution, we performed
copy number profiling and exome sequencing. We flow-sorted 50 single
nuclei from the hypodiploid (H), diploid (D) and aneuploid (A) ploidy
distributions for copy number profiling using SNS (Fig. 3c). Neighbour-
joining revealed two distinct subpopulations of tumour cells (A and H)
in addition to the normal diploid cells (Fig. 3d). The single cell copy num-
ber profiles were analysed using clustered heatmaps, which showed highly
similar rearrangements within each subpopulation (A mean R2 5 0.91,
H mean R2 5 0.88), but were distinguished by two large deletions on
chromosome 9 and 15 (Extended Data Fig. 3b).

Next, we flow-sorted 16 single tumour nuclei from the G2/M peaks
(H and A) and 16 single normal nuclei for exome sequencing using nuc-
seq (Fig. 3e). Non-synonymous point mutations were used to perform

hierarchical clustering and multi-dimensional scaling (MDS). As expected,
the 374 clonal non-synonymous mutations detected by bulk sequencing
were found in the majority of the single tumour cells, however, we also
identified 145 additional subclonal non-synonymous mutations that were
not detected in the bulk tumour (Supplementary Table 7). MDS identi-
fied 4 distinct clusters, corresponding to three tumour subpopulations
(H, A1 and A2) and the normal cells (Extended Data Fig. 5a). Hierarchical
clustering showed that many of the subclonal mutations occurred exclu-
sively in one subpopulation (H, A1 or A2) (Fig. 3e). The A1 subpopulation
contained 66 unique subclonal non-synonymous mutations, including
AURKA, SYNE2 and PPP2R1A. The A2 subpopulation contained 52
unique subclonal non-synonymous mutations including TGFB2 and
CHRM5. In contrast only two subclonal mutations were shared between
the normal cells (Fig. 3e, right panel). Many of the subclonal mutations
(23.44%) were predicted to damage protein function by both POLYPHEN21

and SIFT22 (Extended Data Fig. 5b).

Single-molecule targeted deep sequencing
To validate the mutations detected by single cell sequencing and de-
termine their frequencies in the bulk tumour, we performed targeted
single-molecule deep-sequencing. Duplex libraries were constructed
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from bulk tissue to reduce the error rate of next-generation sequencing10.
Custom capture platforms were designed to target mutations detected in
the single cells of the ERBC and TNBC tumours (Methods). Targeted
deep-sequencing (116,9523) was performed in the ER tumour result-
ing in a single-molecule coverage depth of 5,6953 using single-strand
consensus sequences (SSCS). Deep-sequencing of the TNBC (118,7433)
resulted in a single-molecule coverage depth of 6,6343 using SSCS (Ex-
tended Data Fig. 4). We found that 61.5% of the reads were in the target
regions in the ERBC and 80.2% in the TNBC.

The ERBC duplex data validated 94.44% (17/18) of the clonal muta-
tions, 90.47% (19/21) of the subclonal mutations, and 19.40% (26/134)
of the de novo mutations detected by single cell sequencing (P , 0.01)
(Methods). The clonal mutations occurred at high frequencies in the
tumour mass, whereas the subclonal mutations (0.0895 mean) and de
novo mutations (0.0195 mean) were very rare (Fig. 4a). Similarly, in the
TNBC we validated 99.73% (374/375) of the clonal mutations, 64.83%
(94/145) of the subclonal mutations and 26.99% (152/563) of the de novo
mutations (P , 0.01) (Methods). Similarly, we found that the clonal
mutations in the TNBC showed high frequencies (0.4457 mean), how-
ever, the subclonal mutations were less prevalent (0.050 mean) and the
de novo mutations were very rare (0.00047 mean) (Fig. 4b). This data sug-
gests that many of the subclonal and de novo mutations are likely to be
real biological variants that occur at low frequencies in the tumour mass.

Mathematical modelling of the mutation rates
To estimate the mutation rates in each tumour, we used the single cell
mutation frequencies and designed a mathematical stochastic birth-and-
death process model that uses experimentally derived parameters for cell
birth rates (Ki-67 staining), cell death rates (caspase-3 staining), total
tumour cell numbers (flow-sorting cell counts) and the tumour mass
doubling time for invasive carcinomas (mean 5 168 days)23–25 (Methods).
We modelled data for a series of mutation rates and compared the data to
the empirical single cell mutation frequency distributions (Supplementary
Table 8). Our data suggest that the ERBC had a mutation rate of MR 5 0.6
mutations per cell division for the exome data (Fig. 4c) and MR 5 0.9 for
the single cell whole-genome data (Fig. 4d). These data are similar to

the error rates reported for normal cells, which are approximately 0.6
mutations per cell division (error rate 5 1 3 10210)26–28. In contrast, our
modelling suggests a mutation rate of MR 5 8 for the TNBC, suggesting
a 13.33 fold increase relative to normal cells (Fig. 4e).

Discussion
In this study we report the development of a novel single cell genome
sequencing method that utilizes G2/M nuclei to achieve high-coverage
data with low error rates. Although G2/M nuclei were used in this study,
the experimental protocol can also be used to sequence nuclei at any
stage of the cell cycle. We applied nuc-seq to delineate clonal diversity
and investigate mutational evolution in two breast cancer patients. Our
data clearly show that no two single tumour cells are genetically ident-
ical, calling into question the strict definition of a clone. In both patients
we observed a large number of subclonal and de novo mutations. These
data suggest that point mutations evolved gradually over long periods
of time, generating extensive clonal diversity (Fig. 4f, g). In contrast, the
single cell copy number profiles were highly similar, suggesting that
chromosome rearrangements occurred early, in punctuated bursts of
evolution, followed by stable clonal expansions to form the tumour
mass (Fig. 4h, i).

We previously reported punctuated copy number evolution by sequen-
cing single cells from a TNBC patient11. This model has also been sup-
ported by bulk sequencing data in prostate cancer29 and in rearrangement
patterns called firestorms30 or chromothripsis31. A punctuated model is
consistent with the mechanisms that underlie CNAs, including chromo-
some missegregation32, cytokinesis defects and breakage-fusion-bridge33,
which can generate complex rearrangements in just a few cell divisions.
In contrast, point mutations occur through defects in DNA repair or
replication machinery34, which accumulate more gradually over many
cell divisions. Our data are consistent with these mechanisms, and fur-
ther show that two distinct molecular clocks were operating at different
stages of tumour growth (Extended Data Fig. 6).

A pervasive problem in the field of single cell genomics is the inab-
ility to validate mutations that are detected in single cells. To address this
problem, we combined single cell sequencing with targeted single-molecule
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deep-sequencing. This approach not only validates mutations, but also
measures the precise mutation frequencies in the bulk population.
Using this approach, we identified hundreds of subclonal and de novo
mutations that were present at low frequencies (,10%) in the tumour
mass. These rare mutations may have an important role in diversifying
the phenotypes of cancer cells, allowing them to survive selective pres-
sures in the tumour microenvironment, including the immune system,
hypoxia and chemotherapy35,36.

A salient question in the field of chemotherapy is whether resist-
ance mutations are pre-existing in rare cells in the tumour, or alter-
natively, emerge spontaneously in response to being challenged by the
therapeutic agent. Although this question has been studied for dec-
ades in bacteria37, it remains poorly understood in human cancers.

Our data suggest that a large number of diverse mutations are likely to
be pre-existing in the tumour mass before chemotherapy. Our data also
has important implications for the mutator phenotype, which posits
that tumour evolution is driven by increased mutation rates34,38. Although
TCGA studies39–41 report increased mutation frequencies, it remains
unclear whether these mutations accumulate over many cell divisions
(at a normal error rate) or through an increased mutation rate. Our
TNBC data suggest an increased mutation rate (13.33) relative to the
normal cells, supporting this model.

We expect that single cell genome sequencing will open up new ave-
nues of investigation in many diverse fields of biology. In cancer research
there will be immediate applications for studying cancer stem cells and
circulating tumour cells. In the clinic, these tools will have important
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applications in early detection and non-invasive monitoring. Beyond
cancer, these tools will have utility in microbiology, development, im-
munology and neuroscience and will lead to substantial improvements
in our fundamental understanding of human diseases.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Tumour and cell line samples. SK-BR-3 is a Her2 positive (ER2/PR2/Her21) breast
cancer cell line that was previously used for single cell copy number profiling11. The
oestrogen receptor positive breast cancer (ERBC) and triple-negative breast tumour
(TNBC) samples used in this study were obtained from the MD Anderson Cancer
Center Breast Tissue bank as frozen tumour specimens. Histopathology classified
both breast tumours as invasive ductal carcinomas. The ERBC was also reported to
have mixed invasive lobular carcinoma. Both tumours were excised by lumpectomy
before any chemotherapy or radiation therapy. The ERBC tumour grade was scored
as Nottingham histological grade 2, whereas the TNBC tumour was scored as grade
3. Receptor staining showed that the ER tumour was positive for oestrogen receptor
(80%), positive for progesterone receptor (90%) and negative for the Her2 receptor
(FISH Her2/CEP17, ratio 1.1). The TNBC was negative for oestrogen receptor (2%),
negative for progesterone receptor (3%) and negative for the Her2 receptor (FISH
Her2/CEP17, ratio 1.3). This study was approved by the Internal Review Board
(IRB) at MD Anderson Cancer Center.
Spectral karyotyping. Exponentially growing SK-BR-3 cells were exposed to Colcemid
(0.04mg ml21) for one hour at 37 uC and to hypotonic treatment (0.075 M KCl) for
20 min at room temperature. Cells were fixed in a methanol and acetic acid (3:1 by
volume) mixture for 15 min and washed three times in the fixative. Slides were
prepared by dropping the cell suspension on wet slides and air drying. SKY was
performed according to the manufacturer’s protocol using Human Paint probes
(ASI, Vista, CA). Images were captured using Nikon 80i microscope equipped with
Spectral Karyotyping software from ASI, Vista, CA. 100 metaphases from each
sample were analysed in detail.
Isolation of single nuclei by flow-sorting. Nuclei of cell lines and frozen tumours
were isolated using NST/DAPI buffer (800 ml of NST (146 mM NaCl, 10 mM Tris
base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 0.05% BSA, 0.2% Nonidet P-40)), 200 ml
of 106 mM MgCl2, 10 mg of DAPI and 0.1% DNase-free RNase A. Cultured cells
were trypsinized and lysed directly in NST/DAPI buffer. Sectioned tumours were
cut and minced using surgical blades in a Petri dish in NST/DAPI buffer in the
dark. Samples were filtered through a 37-mm plastic mesh to a 5-ml polystyerene
tube. Nuclei were then sorted using FACS Aria II (BD Biosciences) and single
nuclei were deposited into individual wells on a 96-well plate. Single nuclei were
gated from the G2/M distribution of cells.
Limited multiple-displacement-amplification. Multiple-displacement-amplification
was performed on individual sorted nuclei using the REPLI-G UltraFast Mini Kit
(Qiagen, #150035). The protocol was modified by heating the lysed DNA at 65 uC
for 10 min and incubating the DNA with the w29 polymerase at 30 uC for exactly
80 min. DNA was purified using the QIAamp DNA blood mini kit and quantified
using the Qubit 2.0 fluorometer (Invitrogen, Q32866).
Nextera library preparation. The WGA DNA was incubated with the Nextera
transposome (Epicentre, Inc.) to perform a tagmentation reaction in HMW
buffer according to manufacturer’s instruction. The libraries were purified using
MinElute PCR purification kits (Qiagen, #28106), followed by 4 cycles of PCR.
After PCR, the libraries were run on 2% agarose gels and size-selected in the 200–
300 bp range (SK-BR-3) or 400–500 bp range (ER, TNBC). The excised gel blocks
were purified using MinElute purification columns (#28606). The size distribution
and concentration of the libraries were determined using the Bioanalyzer 2100
system (Agilent) using high sensitivity DNA microcapillary chips. The final con-
centration of the library was determined using quantitative PCR with the KAPA
Library Quantification Kit (KAPA Biosystems, KK4835) and fluorescence was
measured using the Qubit 2.0 system (Invitrogen, Q32866).
NEB library preparation. To prepare sequencing libraries by ligation cloning,
100 ng to 1mg of DNA was acoustically sonicated to 300 bp or 500 bp using the
Covaris Sonicator S220. Libraries were constructed using NEBNext DNA library
Prep Master Mix Set for Illumina (New England Laboratory, #F6040L) for end-
repair, 39 adenylation and ligation according to the manufacturer’s instructions.
MinElute PCR Purification Kit (Qiagen, #28006) is used for the purification step
during library prep. Agarose electrophoresis is run for excision at 300 or 400 bp
for size selection. We then performed 8 cycles of PCR following the manufac-
turer’s instructions, using PE5/7 primers (Illumina Inc.). Agencourt AMPure XP
(Beckman Coulter, #A63881) was used for final purification. Final concentration
was measured by quantitative PCR using KAPA Library Quantification Kit (KAPA
Biosystems, KK4835) and ABI PRISM real-time machine (Applied Biosystem
7900HT), as well as 2100 Bioanalyzer (Agilent).
Chromosome PCR panel. To evaluate the single cell WGA amplification efficiency
we designed 22 pairs of primers (Sigma Aldrich) to target 22 loci on different chro-
mosomes for PCR or qPCR amplification: chr1F (TATGGCTGCCCACTCCTTAG);
chr1R(GACCTCGGCCTGGACTACTA); chr2F (CTGGGGCTCTTCAAACTGAG);
chr2R (GGTGGCCGTAGTGGTAGATG); chr3F (CTTGTGGGTGTGGTCAGTTG);
chr3R (CAGTACAAGGGTGGGAGGAA); chr4F (GTCAGAGGGTGAGGGC
AGTA); chr4R (TCAAAATAATGGGCCTGGAA); chr5F (GGGGGACAGGAC

CAGTTATT); chr5R (TCAAAAGAAGTGGGAGGATTG); chr6F (CACCACT
CCACAGGGAGAAT); chr6R (CAGAGACCAAGGGAGAAACG); chr7F (TCG
TCTACCTCCTCCCTCCT); chr7R (GGACACGCAGTGCTCATAGA); chr8F
(GGGTTTTGGTGTTGAGAAAAA); chr8R (GGAGGAGCAAGTTGATTGGTT);
chr9F (CCACCTGCAAAGGGACATAC); chr9R (AGCAAGGAGTTGCCAGG
TTA); chr10F (ACTTGCAGACCACTGGGATT); chr10R(GAGAGCATTGGCC
TCCATAG); chr11F (GATGCAGGGAGGGTATGTGT); chr11R (CCTTGCCA
GTAGGTTTCCTG); chr12F(ACCCTTCCACTGGACCTCTT); chr12R(CATTT
GCTGCCTCACTTGTC); chr13F(TCTCCAGTTTTGAGGGGCTA); chr13R(T
TGGCCTCCACTTCATTTCT); chr14F (GGATGGAACTAGCCATGCAG); chr14R
(GGAGGATCACTGCACACCTT); chr15F (GCGAAAGGAGCTGAAAACAC);
chr15R(TTGACTTCCTCCCTTCTCCA); chr16F (ATGGCCAATAGAATGCC
AAA); chr16R (AAATTGCCTGAAACCCAGTC); chr17F (ATAGCCACACCT
CCTGCATC); chr17R(CCCCGGAATAGACCACTTTC); chr18F (TACTACAG
GCCAGCCATTTTG); chr18R (CTTGTGCTGCTGCTGGTGTA); chr19F (AT
GTGAGACGTCATGGGTGT); chr19R (GGGCGTCTAGGAGCACTG); chr20F
(CCCAAAGAAACAAGGGGAGT); chr20R (AAGCCTACAGCTGGGACTGA);
chr21F(CCATGACTGGAATGACGATG); chr21R(CTTCCCAAAGAATGCCA
AAC); chr22F (GCACCATTCAACCAATCTGA); chr22R(TGCCATTCCCTCT
AATCCTG). The WGA amplification time was extended to generate 100 ng of
DNA before PCR amplification. We used 1 ng of DNA for each PCR amplification
reaction using the KAPA Taq PCR kit (Kapa #BK1001). The PCR conditions used
are: 95 uC for 30 s, followed by 30 cycles (95 uC for 30 s, 60 uC for 60 s and 68 uC for
60 s) and a final extension at 68 uC for 5 min. DNA was separated on a 2% agarose gel.
Immunohistochemistry. For immunohistochemistry analysis frozen tissue sec-
tions (6 mm) were fixed in methanol, and allowed to air dry. Tissue sections were
subjected to peroxidase quenching for 5 min, 10 min blocking, antibody incuba-
tion, 20 min biotin/streptavidin peroxidase binding, and revealed through a 3 min
DAB chromagen detection system, according to standard Invitrogen protocol
(Invitrogen, Frederick, MD). For cleaved caspase-3, a rabbit polyclonal anti-
caspase3 antibody (BioCare Medical, Concord, CA) was diluted 1:200 in diluent
(DAKO, Los Angeles, CA), and incubated for 1 h at room temperature. The rabbit
monoclonal anti-Ki67 (Abcam, Cambridge, MA) was used to stain for Ki-67. The
Ki-67 antibody was diluted 1:400 and allowed to incubate for 1 h at room tem-
perature. Tissue samples were counterstained using haematoxylin nuclear coun-
terstain, by applying haematoxylin for 2.5 min, dipping 10 times in acid rinse (2 ml
glacial acetic acid 1 98 ml of diH20), and incubating in bluing solution (1.5 ml
NH4OH (30%) stock 1 98.5 ml of 70% EtOH) for 1 min.
Single cell exome capture. Exome capture was performed on single cell sequen-
cing libraries using the TruSeq Exome Enrichment Kit (Illumina,15013230) fol-
lowing manufacturer’s instructions with one modification: Nextera PCR primers
(Epicentre) are used in place of the TruSeq PCR primers for library amplification.
The capture platform targeted a 64 Mb region including exons, promoters and
UTRs. Final samples were purified using the AMPpure XP beads (Beckman
Coulter, #A63881).
Next-generation Illumina sequencing. We first performed pre-sequencing runs
of the single cell libraries at low-coverage depth (13). Libraries were multiplexed
and run at 100 single-end cycles on the Illumina HiSeq2000 system. The pre-
sequencing data was aligned to the human genome (HG18) to determine the %
PCR duplicates and % reads mapping uniquely. Libraries that showed .50%
coverage, . 60% reads mapping and ,40% PCR duplicates were selected for full
genome or exome sequencing. Nextera libraries were sequenced using Epicentre
Sequencing primers (Epicentre, Inc.). NEB libraries were sequenced using TruSeq
V2 Sequencing primers (Illumina Inc.). Data was processed using the CASAVA
1.8.1 pipeline (Illumina Inc.) and sequence reads were converted to FASTQ files.
Duplex targeted ultra-deep sequencing. Duplex sequencing libraries were pre-
pared from frozen bulk tumour tissues using the experimental protocol described
by Schmitt et al. 2012. We isolated genomic DNA from bulk tumour tissues using
the DNAeasy Blood & Tissue Kit (Qiagen, cat #69504). The DNA concentration
was quantified using the QuBit DNA fluorometer (Life Technologies) and 1
microgram of DNA was used as input material for each Duplex library construc-
tion, and 4 libraries were constructed in parallel. To generate duplex libraries we
synthesized the following adapters at 100 micromolar scale with HPLC purifica-
tion (Integrated DNA Technologies): DX1 –AATGATACGGCGACCACCGA
ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT; DX2 5-phos-ACT
GNNNNNNNNNNNNAGATCGGAAGAGACACACGTCTGAACTCCAGT
CAC. We generated double-stranded adapters by diluting the oligonucleotides to
100mM and combining 10ml of DX1 and DX2 together for hybridization. The
solution was heated to 95 uC for 5 min and cooled to room temperature for 1 h.
Magnetic beads (Agencourt AMPure XP, Beckman Coulter, #A63881) were used
in all purification steps to recover optimal concentrations of DNA. Genomic DNA
was quantified using a fluorometer (Qubit, Life Sciences) after acoustic sonication
(Covaris) at 400 bp and the size distribution was determined using microchip
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capillary electrophoresis (Bioanalyzer, Agilent) using the High Sensitivity DNA
microchip. Exactly 1 microgram of DNA was used as input material for each
reaction and 4 libraries were performed in parallel. Following the TA cloning
procedure, we quantified the ligated products before PCR amplification, which
was performed at 13 cycles. This step is critical, as PCR will amplify the unique
duplex tags before sequencing and it is necessary to amplify 10–20 duplicate read
tags from each original molecule. After PCR enrichment, we measure the concen-
tration of the libraries using the QuBit fluorometer (QuBit) and qPCR (Applied
Biosciences), which resulted in a final concentration of approximately 500 ng per
reaction. We measured the duplex library insert size by microcapillary gel electro-
phoresis on the Bioanalyzer system using the ‘high-sensitivity’ DNA chips
(Agilent). We then pooled together 4 separate duplex libraries to generate approxi-
mately 2 micrograms of DNA as input material for the custom capture reaction.
The custom capture platforms (Nimblegen, Roche) were designed to target regions
containing mutations that were identified from the single cell sequencing data. In
the ER tumour we synthesized probes to target 173 regions of 200 bp in length.
In the TNBC tumour we synthesized probes to target 1,083 regions of 200 bp in
length. Hybrid capture was performed following manufacturer’s instructions
(Nimblegen, Roche, SeqCap EZ Choice Protocol) with 8 cycles of final PCR amp-
lification. The duplex libraries were sequenced at 100 cycles using paired-end reads
on the HiSeq2000 system (Illumina) to generate approximately 100,0003 target
coverage depth. The duplex sequencing data was processed and analysed as
described in the section: Analysis of duplex sequencing data.
Sequence alignment and processing. Image processing and base calling was
performed using the CASAVA 1.8.1 pipeline (Illumina, Inc.). Sequence reads
in FASTQ format were mapped to the human assembly US National Center
for Biotechnology Information (NCBI) build 36 (hg18) using the Burrows-
Wheeler alignment tool42 (BWA version 0.6.0) with default parameters and
sampe option to create SAM files with correct mate pair information, and read
group tag that includes sample name. Samtools (0.1.16) was used to convert SAM
files to compressed BAM files and sort the BAM files by chromosome coordi-
nates43. The Genome Analysis Toolkit44 (GATK v1.4-37) was used to locally
realign the BAM files at intervals that have indel mismatches before PCR duplic-
ate marking with Picard (version 1.56) (http://picard.sourceforge.net/). Reads
with mapping quality score less than 40 were removed from the BAM files.
Single nucleotide variant detection. The GATK UnifiedGenotyper was used to
detect single nucleotide variants (SNVs)44. All single cells and population samples
were processed together to generate a single VCF4 file. Variants detected in the
matched normal samples from the ER1 and TNBC were filtered from the somatic
variants to eliminate germline mutations using matched normal tissue samples,
the diploid fraction and the normal single cells. We required a minimum base
quality (mbq) of 20 for the base to be considered during variant detection.
Coverage depth at a given locus of greater than 2,500 reads was down sampled
to expedite analysis processing. We then used the GATK variant recalibrator to
filter the output at default sensitivity level. Recalibration training databases include
hapmap 3.3, dbSNP build 132, Omni 2.5M chip and Mills. Annotations used for
training include variant quality score by depth (QD), mapping quality rank sum
score, read position rank sum score, mapping quality (MQ), coverage depth (DP)
and strand bias (FS). After recalibration, SNVs within 10bp of another SNV or
Indel were excluded to avoid false positives caused by misalignment. A minimum
coverage depth of 10 and at least 3 variant reads were required for the detection of
SNVs. GATK SelectVariants was used to separate SNVs into VCF4 files for down-
stream annotation.
Structural variant detection in population samples. Structural variants were
detected using CREST45 and filtered using Perl scripts that required a minimum
of 3 split-reads to detect an event. In the population sample structural variants
were detected including intrachromosomal translocations, interchromosomal
translocations, inversions, insertions and deletions. Structural variants were
intersected with BED files from the cancer gene census46 and RefSeq47 in order
to identify rearrangements in normal and cancer genes.
Copy number detection in single cell and population samples. Copy number
was detected from sequence read density using the variable binning method11,18.
Briefly, copy number is calculated from read density by dividing the genome into
‘bins’ and counting the number of unique reads in each interval. To determine
interval sizes we simulated sequence reads by sampling 200 million sequences of
length 48 from the human reference genome (HG19/NCBI37) and introduced
single nucleotide errors with a frequency encountered during Illumina sequen-
cing. These sequences were mapped back to the human reference genome using
BWA and filtered for unique mappings. We assigned a number of bins to each
chromosome based on the proportion of simulated reads mapped. We then
divided each chromosome into bins with an equal number of simulated reads.
This resulted in 12,508 genomic bins with no bins crossing chromosome bound-
aries. The median genomic length spanned by each bin is 220 kb. This variable

binning efficiently reduces false deletion events when compared to uniform
length-fixed bins. Large bins were filtered to remove false-positive amplifications
in the centromeric and telomeric regions. We then applied Loess normalization to
correct for GC bias18. The copy number profiles were segmented using the
Kolmogorov–Smirnov (KS) statistical test48.
Databases filtering and annotation. Single nucleotide variants and indels were
annotated using Annovar (version 2013 Nov20, Aug 23rd)49. We downloaded data-
bases dbSNP build 135, 1000Genomes, ployphen and avsift using the Annovar perl
scripts. Results for SK-BR-3 were annotated with dbSNP and 1KG filtering, while
variants for BC10 and TNBC were annotated without dbSNP and 1KG filtering as
we were able to detect germline mutations for both tumours. Mutations in the
COSMIC database were downloaded separately50 as well as the cancer gene census
database46. BEDtools (v2.14.2)51 was used to annotate both COSMIC mutations
and cancer genes. A Perl script was developed to run all of the annotation steps
automatically and pool annotation results into one final file.
Calculation of coverage uniformity. Lorenz curves were calculated to determine
coverage uniformity in the single cell and population samples. Briefly, sequence
reads were aligned with BWA using unique mappings and PCR duplicates were
removed with Picard. From the BAM files we ran samtools mpileup with the
following parameters: ‘‘-A –B –d1000000000’’ to determine the read counts for
every base in the human genome reference assembly HG18. The depth values
were sorted using Unix sort with ‘‘-n’’ parameter and a custom perl script was
used to read the sorted depth values and calculate the cumulative fraction of the
genome that was covered and the cumulative fraction of reads. The curves for
each cells and population samples were plotted in Matlab (Mathworks).
Calculation of neighbour-joining trees. Exome data from single cells were
aligned to HG18 and variants were detected using GATK (as described above).
VCF4 files were generated and a binary distance matrix was calculated using point
mutations at sites with coverage $ 103. The neighbour-joining trees52 were cal-
culated using Matlab (Mathworks) using one of two distance metrics: Hamming
distance or Euclidean distance. The neighbour-joining trees were plotted as linear
trees or circular trees, and were re-rooted by the matched normal population
sample.
Analysis of duplex sequencing data. The analysis of duplex sequencing data was
performed as described in Schmitt et al. 2012. We trimmed the 12 nucleotides tags
from each paired-end reads, 5 nucleotide anchor sequence following the fixed
adaptor sequence and 4 nucleotides after the anchor sequences from all reads
using the script ‘‘tag_to_header.py’’. The python script combined the 12 nucleo-
tides tags from both the forward and reverse reads to form a 24 nucleotides
combined tag for each molecule. Trimmed sequence reads were then aligned to
the human genome assembly HG18 using BWA. The resulting SAM files were
converted to BAM files using Samtools and sorted by chromosome position.
Unmapped reads were removed using ‘‘Samtools view –F4’’ command. We used
a Python script ‘‘consensusMaker.py’’ to organize all reads with identical tags into
one group to extract a single strand consensus sequence (SSCS). We used default
parameters provided by the script with at least 3 reads required to form an SSCS
and at least 70% of nucleotides at a position must be identical to form a consensus
nucleotide in the SSCS. Resulting SSCSs were mapped using BWA to HG18. SSCS
SAM files were converted to BAM files, which were sorted and merged together. A
custom Perl script was used to extract data from base sites that overlap with
targeted mutations. The following mpileup parameters were used: ’’ samtools
mpileup -A -BQ0 -d1000000000 -q 0 –f. For each nucleotide, we filtered by a
minimum base quality of 20 and computed the number of reads supporting the
base. Regions with less than 500 molecule depth were excluded from analysis. To
determine if a duplex variant is validated we calculate the probability of error
using a binomial model (next section).
Calculation of duplex mutation probabilities. We calculate the probability that
a variant is an error in the single-molecule duplex sequencing data using a discrete
binomial probability distribution model. In this model we calculate the probabil-
ity that a base is due to chance by considering random errors in alternative bases
and multiplying this probability by the probability of errors based on sequence
read depth, by incorporating the error rate of duplex sequencing.

p eð Þ~
n

x

� �
px 1{pð Þ n{xð Þ

� �
k

n

� �
qn 1{qð Þ k{nð Þ

� �

In this model p is the probability that a base is the variant base (P 5 0.33) exclud-
ing probability of the reference base. We set x equal to the number of non-
reference reads that support the variant allele, and n equal to the total number
of non-reference reads. This is the probability that the reference base is not due to
chance, which we multiply by the probability that a base occurs due to random
chance at a given molecular read depth based on the duplex error rate q. The latter
probability q is calculated using error rate of duplex sequencing, the single molecule
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depth at each variant site k and the number of non-reference variant reads n. We
consider variants with p(e) , 0.01 to be validated in our data.
Multi-dimensional-scaling analysis. Non-synonymous mutations were parsed
from the VCF4 files containing single cell exome variant data to construct a
binary distance matrix at sites where coverage depth was $ 63. Distance was
calculated using the hamming method and missing values with no coverage were
converted to 0. The resulting binary matrix was used to perform multi-dimensional
scaling in R (http://www.r-project.org). The MDS coordinates 1 and 2 were plotted
against each other to identify clusters of cells with similar mutations.
Calculation of technical error rates. The allelic dropout rate (ADR) is defined as
the percent of homozygous sites in the single cell samples (Ci) where the popu-
lation reference sample (P) is heterozygous at the same nucleotide site. These
calculations were made using the SK-BR-3 single cell samples (n 5 2) and the
population sample at nucleotide sites where read depth is $ 63 in both samples
and bases that have passed variant quality score recalibration44.

ADR~
1
n

Xn

i~1

Ci

P

The false positive rate (FPR) is defined as the number of heterozygous sites in the
single cell sample (Ci) is divided by the number of sites in the population reference
sample (P) that are homozygous for the reference allele at the same nucleotide
site. From the single cell samples we subtract the number of validated mutations
(v), which are not technical errors.

FPR~
1
n

Xn

i~1

C{vð Þi
P

False negative coverage (FNC) is defined as the percent of bases in the human
genome with $ 13 unique reads in the population sample (P) minus the mean
percent of bases in the single cell samples (Si) where depth is $ 13 using uniquely
mapped reads.

FNC~
1
n

Xn

i~1

P{Si

Calculation of mutation rates. Our model follows a branching process. During
each elementary time step, birth and death may occur depending on their respect-
ive rates; if a cell division takes place, mutations may occur. The number of
mutations that occur during each time step follows a Poisson distribution with
a mean parameter, which is derived from the observed data for a particular cell
type. Each mutation in a cell is assigned a unique identifier and mutations can be

passed to new generations. The simulation starts with one cell and terminates
when the total cell population reaches the total number in the tumour cell popu-
lation (flow-sorting tumour cell counts). After completing the simulation, we
sample a matching number of cells (matched to the number of cells sequenced)
from the millions of tumour cells. For these sampled cells, we tabulate mutations
that are shared between at least two single cells. We exclude mutation frequencies
that occur in .6 single cells to focus our analysis on random mutations, excluding
mutations that are likely to be influenced by positive selection. We repeat this
process 1,000 times and average these results. We repeat this modelling for a large
series of mutation rates and compare the distribution to the empirical distribu-
tions measured from single cell frequencies. We then compute the sum of square
difference for each mutation rate, and selecting the distribution with the min-
imum difference, to determine the mutation rate. The following experimentally
derived parameters were used for a series of mutation rates. For ER1 tumour:
total number of tumour cells 5 12,451,945 (flow-sorted tumour cell counts); cell
birth rate 5 0.004654777 (24.2% Ki-67 index); cell death rate 5 0.000535032
(1.1% caspase-3 index) and tumour cell doubling time 5 168 days. For TNBC:
total number of tumour cells 5 17,719,218; cell birth rate5 0.051202551 (43.5%
Ki-67 index); cell death rate5 0.001229775 (10.4% caspase-3 index) and tumour
cell doubling time 5 168 days.
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Extended Data Figure 1 | Nuc-seq method. a, Nuclear suspensions were
prepared and stained with DAPI for flow-sorting, showing distributions of
ploidy. The G2/M distribution was gated and single nuclei were deposited into
wells. b, Cells were lysed and incubated with the W29 polymerase to perform
multiple-displacement-amplification for a limited isothermal time-frame.
c, d, Sequence libraries were prepared using one of two methods: Tn5
tagmentation (c), or low-input TA ligation cloning (d) (see Methods). e, Exome
capture was optionally performed to isolate gDNA in exonic regions.
f, Libraries were sequenced on the Illumina HiSeq2000 system. g, Somatic
mutations were detected using a custom processing pipeline (Methods).
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Extended Data Figure 2 | Evaluation of WGA efficiency using
chromosome-specific primers. Whole genome amplified DNA from each
single cell was used to perform PCR quality control experiments to determine
WGA efficiency. For each cell, 22 reactions were performed using primer pairs
that target each autosome and the resulting 200 bp PCR product were

separated by gel electrophoresis (Methods). a, Two single nuclei were flow-
sorted from the G2/M gate and amplified to WGA followed by PCR using 22
primer pairs. b, Two single nuclei were flow-sorted from the G1/0 gate and
subject to WGA followed by PCR using 22 primer pairs. PCR products that
failed to amplify are marked with an ‘x’ on the gel.
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Extended Data Figure 3 | Clustered heatmaps of single cell copy number
profiles. Single cell segmented copy number profiles were clustered and used to
build heatmaps, showing amplifications in red and deletions in blue. a, Copy

number profiles of 50 single cells from the ERBC. b, Copy number profiles of 50
single cells from the TNBC patient.
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Extended Data Figure 4 | Duplex single-molecule targeted deep-
sequencing. a, Experimental protocol for generating duplex libraries from bulk
tumour DNA for custom capture and targeted ultra-deep sequencing. b, Data
processing pipeline for duplex data to generate single-molecule data and detect

mutation frequencies. c, Distribution of unique molecule tag duplicates for the
ER breast cancer patient d, Distribution of unique molecule tag duplicates for
the TNBC. e, Single-molecule coverage depth distribution for the ER1 tumour
data. f, Single-molecule coverage depth distribution for the TNBC data.
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Extended Data Figure 5 | TNBC Multi-dimensional scaling and protein
prediction plots. a, Multi-dimensional scaling plot of the nonsynonymous
mutations from the single-nuclei exome sequencing data in the TNBC
b, Polyphen and SIFT protein impact prediction scores for the subclonal
mutations in the TNBC patient.
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Extended Data Figure 6 | Models of clonal evolution in breast cancer.
a, Clonal evolution in the ERBC inferred from single cell exome and copy

number data. b, Clonal evolution in the TNBC inferred from single cell exome
and copy number data.
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