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Genome network medicine:
innovation to overcome huge
challenges in cancer therapy
Dimitrios H. Roukos∗

The post-ENCODE era shapes now a new biomedical research direction for
understanding transcriptional and signaling networks driving gene expression
and core cellular processes such as cell fate, survival, and apoptosis. Over the past
half century, the Francis Crick ‘central dogma’ of single n gene/protein-phenotype
(trait/disease) has defined biology, human physiology, disease, diagnostics, and
drugs discovery. However, the ENCODE project and several other genomic
studies using high-throughput sequencing technologies, computational strategies,
and imaging techniques to visualize regulatory networks, provide evidence that
transcriptional process and gene expression are regulated by highly complex
dynamic molecular and signaling networks. This Focus article describes the
linear experimentation-based limitations of diagnostics and therapeutics to cure
advanced cancer and the need to move on from reductionist to network-based
approaches. With evident a wide genomic heterogeneity, the power and challenges
of next-generation sequencing (NGS) technologies to identify a patient’s personal
mutational landscape for tailoring the best target drugs in the individual patient
are discussed. However, the available drugs are not capable of targeting aberrant
signaling networks and research on functional transcriptional heterogeneity and
functional genome organization is poorly understood. Therefore, the future clinical
genome network medicine aiming at overcoming multiple problems in the
new fields of regulatory DNA mapping, noncoding RNA, enhancer RNAs, and
dynamic complexity of transcriptional circuitry are also discussed expecting in
new innovation technology and strong appreciation of clinical data and evidence-
based medicine. The problematic and potential solutions in the discovery of
next-generation, molecular, and signaling circuitry-based biomarkers and drugs
are explored. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Cure of major diseases such as cancer, cardio-
vascular disorder, diabetes, schizophrenia, and

others still remains elusive. Current biology, medicine
and drugs discovery over the last 60 years are based
on the dogma of reductionism, namely one cause
(gene/protein)-one result (trait, phenotype) in a linear
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relationship. In clinical medicine, clinical symptoms
and signs define the start point of diagnostic explo-
ration. Pro-symptomatic disease risk prediction-based
prevention or diagnosis at very very early stage can be
associated with high cure rates. But despite long-term
effort this goal has not been achieved. For example,
delay in diagnosis of atherosclerosis with advanced
lipids metabolism deregulation and hypertension rep-
resent not reversible cellular damage and although
available drugs can prolong survival, the rates of coro-
nary heart infarct, stroke, and death in this patients’
group are alarmingly high.
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FROM ‘CENTRAL DOGMA’ TO
GENOME NETWORK MEDICINE
Sixty years after the discovery of the DNA double
helix by Crick, Watson and colleagues and the gene
as the unit of hereditary information flow, we enter
into the Genomic Network Medicine (GNM) era.1 A
decade after the completion of the Human Genome
Project with the first draft of human genome sequence
that rose the major hope for personalized medicine,
we know that this goal is misleading suggesting the
need to understand gene function itself beyond simple
focus on protein-coding sequencing2.

Since 1958, when Francis Crick3 published
his idea on reductionism-based transcription and
translation, it has been the standard approach in
biology and Life Science. Even today the ‘central
dogma’ of the protein-coding DNA sequence which
is transcribed into messenger RNA (mRNA) and
translated into proteins and ultimately into an
organism’s phenotype represents the basic principle
of linear experimentation in biomedical research and
clinical medicine. We are now shifting from this
simple concept that a single individual mutated gene
deregulates transcription, changes protein structure
and function leading to a trait, phenotype, or even
chronic complex disease such as cancer, diabetes,
mental, and other disorders, to a much more
complicated approach of nonlinear connectivity,
genomic motifs, genes, and transcripts clusters and
molecular interactions network-based concept toward
network medicine4.

Indeed, the conventional reductionist approach
has driven research in academia, biotechnology,
and pharmaceutical industry. Nearly all currently
available diagnostics, disease classification, prognostic
and predictive markers and modern drugs are based
on the ‘single-gene transcription dogma’. In a recent
catalog of all novel drugs which have been developed
and approved by the FDA over the last three
decades represent molecular targets of a single gene
or protein5. However, with the recent publication
of the ENCODE data6 supporting a much more
complex polygenic model and regulatory DNA7 it
becomes clear that transcriptional process is much
more complex than previously thought2. This evidence
together with slow progress in developing robust
biomarkers and effective drugs for curing common
multifactorial diseases, shape now a new avenue
in understanding complex and dynamic evolution,
biology, disease initiation, and treatment8. This focus
article discusses latest technological developments
in genome sequence9, computational strategies, and
imaging technologies for exploring transcriptional
regulatory and signaling networks driving gene

expression and cell function10–15 and the challenges
to translate genetic and genomic heterogeneity16

including transcriptional high diversity17,18 into
clinical medicine advancement.

TARGET THERAPY

With standardization of nonspecific multimodal
treatment, the expected further improvement from this
treatment is small. Efforts therefore have been focused
on targeted drugs. Over the past years an explosion
in this therapeutic field has been occurred. More than
35 drugs have been approved by the FDA and many
more are in preclinical and clinical staging for the
treatment of cancer patients. All these anticancer
drugs and other targeted agents are based on the
Crick’s single gene transcriptional concept. However,
the efficacy of these individual signaling pathways
inhibitors, which target a mutated gene or its encoded
protein, is in most cases modest. The key conclusions,
which can currently be drawn about the available
target therapy include a temporary antitumor activity,
high resistance rates, and a efficacy limited to a small
genetic heterogeneity-based subgroup predicted on the
basis of biomarkers19,20.

Despite these substantial limitations, there are
some isolated successful paradigms. True overall
survival benefit has been rarely observed with a few
only drugs. For example, the HER2 signaling pathway
inhibitor trastuzumab in patients with HER2-positive
breast cancer. Trastuzumab is the single available
targeted drug, in a very common solid tumor such
as breast cancer, which is effective also in the
adjuvant setting and thus can be translated into
increased cure rate. But even in this case, more recent
evidence suggests high resistance rates21. This problem
appears to partially be overcome by using trastuzumab
emtansine conjugate20,22.

Another recent paradigm that confirms the
genomic cancer heterogeneity has recently published23

proving the need to move away from ‘a size-fits-all’
concept. This approach has been widely used till
recently by pharmaceutical industry aiming at treating
all patients with a major cancer type with the same
drug which can dramatically increase the economic
gain for the companies. At the same time this study
reveals how extremely difficult is to reach personal-
ized clinical medicine. Lung cancer has the highest
mortality among all cancers worldwide. Patients with
nonsmall-cell lung cancer (NSCLC) and chromosomal
rearrangements of the anaplastic lymphoma kinase
(ALK) gene account for approximately 5% of NSCLC
cases and define a distinct molecular subtype of lung
cancer. For this small specific subgroup of patients,
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a randomized, phase 3 trial comparing crizotinib, an
oral tyrosine kinase inhibitor (TKI) targeting ALK,
with standard chemotherapy in 347 patients with
advanced, previously treated ALK-positive NSCLC
showed improved clinical response in the crizotinib
group. However, this antitumor activity could be
translated into progression-free survival only without
a true overall survival prolongation and it was associ-
ated with significantly higher adverse effects rate23. If
we consider, in addition to these clinical limitations,
also the high cost of both the crizotinib treatment and
the ALK test in all NSCLC patients for identifying
only ∼5% with this rearrangement we can understand
the slow progress of this reductionist approach.

GENOMIC HETEROGENEITY AND
THE POWER OF NEXT-GENERATION
SEQUENCING

Genes are crucial in human physiology. When
mutations are accumulated disease can be developed.
The unprecedented power of NGS to identify the
mutational landscape at low cost, fast and accurately
has revolutionized both biomedical research and
more recently translational medicine24. The ability
of applying NGS platforms in biological samples for
the inter- and intra-patient assessment of genetic and
genomic heterogeneity among patients with the same
traditionally defined disease, such as for example
cancer, raises the expectation to achieve accurate
genomic classification and personalized management
of patients25. These DNA sequencing machines
allow the identification of all classes of mutations
including point mutations such as single-nucleotide

polymorphisms (SNPs) and insertions-deletions
(indels) as well as larger structural changes such as
inherited copy-number-variants (CNVs) or somatic
copy-number-aberrations (CNAs) and also genomic
translocation. All these sequences changes can be
detected in both the protein-coding region which
accounts for ∼1.5% of the genome involving
the ∼21,000 genes by whole-exome sequencing
(WES) and in the large 98.5% of noncoding region
by whole-genome sequencing (WGS). Over the
past decade ∼140 cancer mutated genes have been
identified for various cancer types26 and only recently
with the availability of WGS has started the effort
to noncoding sequencing for whole-genome mapping
of inherited and somatic mutations. This approach
may have important clinical implications given the
potential functional role of regulatory DNA27–29.

Table 1 summarizes beyond recently reported
cancer mutated genes26, also cancer susceptibility loci
more recently identified by genome-wide association
studies GWAS30–39 as well as new WGS and
integrative genomic analysis-based cancer genes
identification40–44. Despite refinement of genome-
wide mapping technologies and evolution from second
(NGS) to third-generation sequencing platforms9

multiple challenges need to be overcome to integrate
WES/WGS into routine clinic.

SEQUENCING STRATEGIES
AND CLINICAL INTERPRETATION
CHALLENGES

Accurate NGS-based genomic classification poten-
tially allows for improved therapeutics of complex

TABLE 1 Mutations, Genes, and Susceptibility Loci Involved in Some Cancer Types Identified by Genome Sequencing, Genome-Wide Association
Studies (GWAS), and Integrative Genomic Analysis-Based Studies

Type of Cancer

Sequencing

Number of

Genes [ref.]

Number of

Mutations

Latest

GWAS

Integrative

Genomic

Analysis

Total Number of

Susceptibility

Loci

Total

Number

of Genes

Total Number

(Genes–Mutations

–Loci)

Breast 3626 11126 6830,31 640,41,42 68 42 221
Ovarian 1226 4226 431 — 4 12 58
Prostate 1726 4126 2331 — 23 17 81
CRC colorectal cancer 2326 6626 532 243 5 25 96
Pancreatic 1926 4526 333 — 3 19 67
Lung 526 31026 434 — 4 5 319
Medulloblastoma 426 826 — 644 — 10 18
Glioblastoma 226 4926 235 — 2 2 53
Gastric 426 5326 7 genes, 11 loci36–39 — 11 11 75
Total 122 725 120 14 120 143 988
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diseases. Targeting genetic alterations behind the
individual patient identified by WES allows the selec-
tion among available drugs those which inhibit these
mutated genes. However, this personalized approach
is still at very initial stage and many hurdles exist
to reach clinical decisions. First, the vast majority of
mutations identified are passengers with neutral effect
on cancer and should be distinguished from much
fewer ‘drivers’ mutations within the genes (intronic)
which are causatively involved in cancer26,40–44. With
an expected dramatic increase in sample size of tumor-
normal tissues pairs analysis in sequencing studies and
the wide mutational heterogeneity, the false-positive
rate of mutated genes responsible for cancer can be
grow with currently used analytical methods to distin-
guish between driver and passenger mutations. Indeed,
many large-scale international consortiums are under-
way including The Cancer Genome Atlas (TCGA)45

and the International Cancer Genome Consortium46

for a comprehensive list of cancer mutated genes in
many cancer types. Indeed, a latest study assessed a
high inaccurate rate by currently used methods and
developed and propose the MutSigCV that enable the
identification of genes truly associated with cancer47.
Second, the catalog of genes and mutations is now
incomplete. Given the cell-specificity revealed by the
ENCODE data6,7 and the heterogeneity sequencing of
hundreds or thousands of cancer-tissues sample pairs
for each common cancer type should be analyzed.
Third, it appears essential to consider major clinical
results from randomized phase 3 trials, meta-analyses
and national statistics for example the U.S. cancer
morbidity and mortality rates. These findings are cru-
cial for clinical interpretation of sequencing data. For
example, for many cancer types early-stage cancer
is associated with high cure rates while in advanced
and metastatic the disease is currently incurable. The
number of driver mutated genes involved in tumori-
genesis is small, about two to eight mutated genes
and their dysfunction still at initial stage with low
metastatic ability of tumor cells enabling high ther-
apeutic response to surgery alone or plus adjuvant
therapy. By contrast, in advanced disease not only this
number of cancer-mutated genes is much larger but
more importantly the deregulation of genome func-
tion, of multiple interacting gene expression circuitry
and signaling networks is extremely complex, nearly
chaotic48. This comprehensive aberrant intracellular
network is probably associated with high metastatic
potential and high death rates26. Analyzing genomic
studies available, Vogelstein et al.26 come to the
conclusion that given the complexity of advanced
cancer, much more effort and investments should be
focused on prevention and early detection rather than

treatment of advanced disease26. Indeed, beyond more
complex genome structural landscape in advanced
cancer, the understanding, prediction, and restore of
whole-genome dysfunction appears currently a daunt-
ing challenge8. Despite these substantial challenges,
emerging biomedical research is increasingly shifted
into exploration of gene function. Challenges, innova-
tive approaches, and major clinical expectations are
discussed below.

GENE EXPRESSION: WHY IS
COMPREHENSIVE UNDERSTANDING
OF REGULATORY CIRCUITRY
ESSENTIAL?

The need for translating gene expression profiling
data into clinic is not new. High-throughput array
technologies with the capacity to screen hundreds
of genes simultaneously for differentially expressed
genes assessment were popular over the past 15 years.
Most of these studies evaluating clinical samples
generated uncertainty but there are also promising
findings. For example, a new molecular classification49

and prognostic and predictive biomarkers in breast
cancer50 have been suggested. More recently, arrays-
based research has moved into miRNAs and CNAs
which contribute to gene expression51. However, none
of these simplified gene expression ‘signatures’ have
proven effective in phase 3 randomized trials and
there is now increasing uncertainty whether a simple
gene expression profiling or an individual biological
system without deep understanding of transcriptional
regulatory networks and a comprehensive view of
dynamic molecular networks we will be able to reach
human biology, physiology, and complex disease
cure52,53.

THE COMPLEXITY OF DYNAMIC
CLINICAL GENOME ARCHITECTURE

Confirming the complexity of transcriptional reg-
ulatory networks and 3D spatial dynamics of
sophisticated whole-genome function, the ENCODE
project6,7,10,11,27 changes the future of both biomedi-
cal research and clinical medicine1. It is important to
note that the ENCODE project launched in 2003 for
studying the functional elements of human genome
was fully based on standard linear experimentation
and reductionist approach at that time7. However,
with the advent of NGS platforms few years later
allowing protein-coding and noncoding sequences and
the large number of GWAS disease-associated vari-
ants identified falling within the noncoding genome
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region affecting transcriptional process and gene
expression regulation, it was essential to study
molecular networks to understand biology and
disease6,7.

FUTURE PERSPECTIVES: CLINICAL
HOPE OR ENDLESS CHALLENGES

Refinement of second and third generation sequencing
platforms, increased sequencing accuracy, and
particularly the rapidly continuing dropping cost
enable the ‘driver’ mutational landscape assessment,
including intra-tumor genomic heterogeneity, for each
individual patient. With the completion over the next
few years of underway large international cancer
genomic projects and many other individual NGS-
based studies, there will be a substantial progress
in decoding a patient’s personal cancer-associated
variants.

Will mutational landscape identification alone
define optimal clinical therapeutic decision? Although
this static knowledge of mutational heterogeneity
can improve oncologists’s decision on choosing from
available drugs, the lacking understanding of how
these mutations affect transcriptional, molecular,
and signaling networks driving gene expression
and cell behavior, raises uncertainty about a true
survival benefit. This skepticism comes from: first
the functionality of 80% of human genome along
with the functional transcriptional role of mutations
in the noncoding sequence and that we should
consider the RNA transcript and not the gene as
the fundamental unit of heredity by the ENCODE
data. Second, these data reveal the importance of
regulatory DNA7 suggesting the need for mapping
both inherited and somatic variation in regulatory
DNA54,55 to understand deregulated transcriptional
activity in cancer cells. Third, latest evidence reveals
that beyond genome-wide mutational heterogeneity,
highly complex transcriptional heterogeneity drives
gene expression14,17,18. Fourth, the regulation of
transcriptional process is much more complex2 than
the standard linear dogma3 and it is performed
through dynamic networks10,11. However, the
ENCODE project has completed the characterization
of only 10% of human TFs and the transcriptional
regulatory networks1,11 still require validation before
clinical implication. Fifth, TFs-binding start and
end sites sequences along with RNA polymerase II
(Pol II) at the transcription start site are crucial
for understanding transcription and gene expression
but research in this field is just now is starting14.
Sixth, beyond the critical role of regulatory DNA,
promoters and enhancers, a key contribution in

transcriptional process have the ncRNAs including
not only the well studied miRNAs but also lncRNA
with intensive research only recently to explore their
role in regulatory networks56 along with RNA-
binding proteins for determining post-transcriptional
regulatory mechanisms57 as well as on the enhancers
RNAs (eRNAs) in breast cancer58. Seventh, epigenetic
changes across the genome, chromatin state, and
3D shaping of gene networks in nuclear space
substantially affect gene expression59,60. All these
elements and functional processes, just now attract
major interest after the publication of the ENCODE
data and once all contribute to transcription and gene
expression regulation confirming the complexity of
global genome function understanding that can be
crucial for clinical medicine.

IS CURRENT TECHNOLOGY
SUFFICIENT OR IS INNOVATION
REQUIRED TO IMPROVE CANCER
MANAGEMENT AND HEALTH IN THE
POST-ENCODE ERA?

The evidence of the importance of regulatory DNA
and ncRNA mapping and dynamic complexity of
transcriptional circuitry orchestrating gene expression
has resulted in the development of new technologies to
study transcription and gene expression in health and
disease. However, beyond NGS-based RNA = seq and
ChIP-seq for transcriptome analysis, computational
strategies and networks visualization techniques in
living cells for studying the highly dynamic aspect of
regulatory networks, new innovation in technology
and scientific methodology is required to, understand,
predict, and translate into clinical medicine the
dynamic complex circuitry regulating transcriptional
process and gene function. In addition, new bioinfor-
matic tools, algorithms, and powerful computers such
as, for example, quantum computers61 and cloud
computing for storage, analysis, and transfer a highly
tremendous volume of data increasingly generating
by studying whole genome structure and function in
model organisms and human physiology and disease.
Novel software programs are also needed to be
developed for translating big data already available
by using linear experimentation such as for example
those from more than 1200 GWAS and many related
databases and the 1000 Genome project into networks
principle-based analyses7. The future of medicine and
cancer therapy is summarized in the terms of Network
Medicine4 and more recently into GNM1 but it is
clear that a long way with multiple hurdles are
ahead of us.
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CONCLUSIONS

Evidence-based medicine is the standard approach
for improving health care. Recent evidence in basic
science reveals the crucial role of transcriptional
and signaling networks in the regulation of gene
expression and cell behavior by the ENCODE project
and other individual studies. In addition, current
phase 3 trials and meta-analyses suggest slow progress
in the management of cancer and other chronic
common disorders. Both these data shape now a new
epoch of medical research based on genome science
and network biology advances. In this new field of
GNM, appreciation of clinical data and innovation
in technology and science is required. Indeed, as
continuously new knowledge arises, there has been
uncertainly on the endless complexity of human
genome functionality and regulation and the priority
which should be given in specific biomedical research

areas most likely to achieve translational and clinical
implications. For example by comparing traditionally
classified homogenous groups of cancer patients
with positive (disease-free survival) and negative
outcome (therapeutic resistance/recurrence/death) by
applying latest technologies in biological samples
(NGS, computational, and visualization techniques)
it can result in clinically important discoveries.

Exploring and assessing not only the driver
mutational landscape but also the aberrant signaling
networks and gene expression deregulation behind the
phenotype, namely recurrence or disease progression
because of drugs resistance, can reveal molecular
mechanisms of treatment failure. Thus, beyond a
simple WGS, a comprehensive understanding of
transcriptional networking process and whole-genome
function can be needed to achieve the next-generation
of robust biomarkers and novel genome-scale
molecular signaling network-based druggable targets.
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